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Abstract 
This study investigates the application of regularization techniques—Ridge, Lasso, Elastic 

Net, and their ensembles (Ridge-Elastic Net and Lasso-Elastic Net)—to correct multicollinearity 
in regression models of forecasting internal migration rates. With a sample dataset of 250 regions 
(2020–2024) and 12 highly correlated predictors, such as income, unemployment, and healthcare 
quality, we compare these techniques with ordinary least squares (OLS). Multicollinearity is 
confirmed with high Variance Inflation Factors (VIF > 10), high correlations (e.g., r = 0.85 
between income and cost of living), and eigenvalue. Results show that Elastic Net and Ridge-
Elastic Net are superior, with the lowest MAE (0.17), MSE (0.26), and the highest R² (0.84), while 
exhibiting moderate variable selection (excluding population density). Lasso-Elastic Net and 
Lasso simplify models to the exclusion of transportation and population density but also yield 
slightly poor performance (MAE = 0.18, MSE = 0.27, R² = 0.83). Ridge attains Elastic Net's 
prediction performance but retains all variables, while OLS is poor (MAE = 0.20, MSE = 0.30, R² 
= 0.80). Elastic Net and Ridge-Elastic Net are the best picks for most accuracy, while Lasso-Elastic 
Net is preferred in scenarios that appreciate model simplicity. The findings highlight the strength 
of regularization in enhancing model stability and predictive accuracy in the presence of 
multicollinearity. 

Keywords: Multicollinearity; ridge regression; lasso regression; elastic net; hybrid models. 

 
1. introduction 

Multicollinearity, characterized by high correlations among independent variables in linear 
regression models, poses significant challenges, including unstable coefficient estimates, inflated 
variances, and reduced interpretability. These issues often lead to misleading statistical inferences, 
as coefficients may exhibit incorrect signs or questionable significance. Regularization techniques, 
such as Ridge, Lasso, and Elastic Net, have been widely adopted to mitigate multicollinearity by 
penalizing coefficients, thereby enhancing model stability and predictive accuracy. These methods 
have proven effective across various fields, including economics, medicine, and social sciences, 
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as demonstrated by studies like Addable (2020), who concentrated on ill-conditioned design 
matrices. The study concluded that ridge regression effectively lowers variance, Lasso is best for 
estimation and selection separately, and Elastic Net combines the advantages of Lasso for 
estimation and selection independently. Although Elastic Net outperformed Lasso and Ridge in 
regression models, it was surprising that the basic Elastic Net performed better in location models 
than the standard Elastic Net. These results show how Elastic Net can effortlessly strike a balance 
between variable selection and variance reduction. 
According to this,(Usman et al.,2021) used breast cancer survival data from Ahmadu Bello 
University Teaching Hospital to compare the predictive power of Ridge, Lasso, and Elastic Net 
against ordinary least squares (OLS). While OLS failed because of multicollinearity when all 
predictors were used, regularized methods produced significant results. Lasso outperformed Ridge 
and Elastic Net with the highest R-squared of 0.3226 and the mean squared error (MSE) of 
0.832178. Age (30–59), marital status, and disease stage were significant predictors of survival 
time; a longer survival time was associated with Stage 1, while a shorter one was associated with 
Stages 2–3. This study highlights situationally dependent method selection and demonstrates how 
Lasso functions in particular contexts. 
To improve their performance, recent research has investigated combining regularization strategies 
with sophisticated analytical techniques. In order to reduce multicollinearity in nonlinear and 
nonstationary multivariate time-series data,( Al-Jawarneh et al.,2021) proposed ELNET-EMD, an 
Elastic Net (ELNET) model combined with Empirical Mode Decomposition (EMD). ELNET-
EMD enhanced variable selection and prediction accuracy by splitting predictors into intrinsic 
mode functions (IMFs) and a residual component. This approach performed better than OLS-EMD 
and Lasso-EMD on simulated data and daily exchange rate datasets, displaying lower error values 
(RMSE, MAE, MAPE). Here, we show that this new approach can be applied to complex 
multicollinearity problems. 
In a simulation study employing high-dimensional data with correlated predictors,( Altelbany ,2022) 
compared Elastic Net, Lasso, and Ridge to further bolster Elastic Net's stability. The findings 
showed that Elastic Net performed better than Lasso and Ridge, increasing the accuracy of variable 
selection and lowering MSE by as much as 12%. Similarly, Elastic Net outperformed Lasso by 10% 
in terms of MSE, even when the predictors were correlated (Sari and Sari, 2023). These findings 
suggest that the most effective method for lowering multicollinearity is Elastic Net's double-penalty 
scheme. 
Regularization techniques encounter further challenges when the number of predictors exceeds the 
number of observations (p > n). Gana (2022) suggested a generalized ridge regression procedure 
that selects significant regressors by dividing the predictor matrix and then using t-ratios. With an 
86% and 74% reduction in squared distances from true coefficients for significant and true 
coefficients, respectively, and a 99% chance of identifying true regressors, the method performed 
better than Elastic Net. Elastic Net, however, maintained its competitiveness, especially in variable 
selection stability.(Wang et al.,2023), on the other hand, offered a cohesive method for high-
dimensional regression that covered the best selection of penalty parameters for Lasso, Ridge, and 
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Elastic Net. Their simulations demonstrated the value of algorithmic enhancement in 
regularization and validated Elastic Net's superiority in variable selection and prediction. 
Sari and Sari (2023) compared the Lasso, Elastic Net, and Ridge regularization techniques. Elastic 
Net was found to perform better in terms of variable selection and prediction when correlated 
predictors were present. The study found that Lasso's mean squared error was 10% higher than 
Elastic Net's. Recent studies by( Herawati et al.,2024) and Kumar and Patel (2024) also commend 
Elastic Net's performance. In comparison to Lasso, Elastic Net reduced prediction error by about 
14%, according to Kumar and Patel's tests, with highly multicollinear data sets yielding the best 
bias-variance trade-off. In comparison to Lasso, Herawati et al. were able to reduce Elastic Net's 
MSE by 15%, and Elastic Net demonstrated balanced performance in high-dimensional data. 
Furthermore, Elastic Net produced the highest coefficient of determination (60.81%) and the 
lowest RMSE (3.3977) when (Nur et al., 2024) applied these techniques to examine infant 
mortality rates in South Sulawesi, Indonesia. These outcomes show how Elastic Net can be used 
with dependent predictors in complex real-world datasets. 
Elastic Net's dominance is further supported by recent studies. Sari and Widyaningsih (2025) 
found that Elastic Net performed 12% better than Lasso and Ridge in terms of prediction accuracy 
on high-dimensional data with highly correlated predictors. Additionally, stability selection for 
Lasso, Ridge, and Elastic Net for Accelerated Failure Time (AFT) models of high-dimensional 
survival data was studied by (Khan et al., 2025). Their results showed that, especially when p > n, 
stability selection improves variable selection stability by lowering false positives and negatives. 
Recent research indicates that Elastic Net with stability selection generated more compact models 
and effectively identified important variables in breast cancer data, including PRC1, age, and 
ZNF533. 
Despite the extensive literature on regularization, a critical research gap remains in the 
comprehensive evaluation of hybrid regularization models, such as Ridge-Elastic Net and Lasso-
Elastic Net, particularly in datasets with high multicollinearity, such as those related to internal 
migration rates. Previous studies have primarily focused on individual regularization techniques 
(e.g., Sari & Sari, 2023;( Herawati et al., 2024) or their application in specific domains like survival 
analysis (Khan et al.,2025) or time-series data (Al-Jawarneh et al., 2021). However, there is a lack 
of comparative studies that systematically assess the performance of hybrid models combining the 
stability of Ridge with the variable selection capabilities of Lasso or Elastic Net in the context of 
internal migration data, where predictors like income, cost of living, and healthcare quality are 
highly correlated (e.g., r = 0.85). 
This study aims to address this gap by evaluating the effectiveness of hybrid regularization models 
(Ridge-Elastic Net and Lasso-Elastic Net) against traditional methods (Ridge, Lasso, Elastic Net, 
and OLS) in mitigating multicollinearity and improving model stability and predictive accuracy. 
Using a dataset of 250 regions (2020–2024) with 12 highly correlated predictors, we propose and 
test novel hybrid approaches to balance coefficient stability and variable selection. The primary 
objective is to determine whether these hybrid models outperform classical regularization 
techniques in handling multicollinearity, offering more robust and interpretable models for 



Abdelreheem Awad Bassuny & Hanaa Abdel Reheem Ibrahim Salem 

 

 
 

337 

predicting internal migration rates. By doing so, this research contributes to the statistical modeling 
literature by introducing tailored hybrid solutions for complex, multicollinear datasets. This 
research not only advances the theoretical understanding of hybrid regularization but also provides 
practical insights for policymakers analyzing migration patterns in highly correlated datasets. 
The primary objective of this study is to propose and evaluate hybrid regularization models to 
outperform classical methods in addressing multicollinearity. 
 

2. Methodology 
Multicollinearity occurs in regression analysis when independent (predictor) variables show 

high or quasi-linear intercorrelations. Multicollinearity raises questions about the coefficient 
estimates without altering the model's predictability because it makes it challenging to discern the 
distinct effects of each independent variable on the dependent variable. 

 

2.1 Impact of Multicollinearity on Parameters 
The problem of high multicollinearity among independent variables leads to a considerable 

amount of instability in highly sensitive coefficient estimates to small changes in the data. 
Coefficient estimates could become exaggerated or illogical as a result. Furthermore, it raises the 
variance of estimates and results in inflated standard errors, which makes it challenging to assess 
the significance of variables using statistical tests of significance like the t-test. 
Furthermore, high independent variable correlations make it more difficult to interpret the model's 
results because it is hard to determine how each variable independently contributes to the 
dependent variable. The interpretation of the results is further complicated by the fact that, due to 
this strong correlation, coefficients may occasionally show signs (positive or negative) that differ 
from the ratio expectations predicted by theory 
 
 

2.2 Methods for Detecting Multicollinearity(Kutner,2005) 

2.2.1 Correlation Coefficient 

 Description: Uses a correlation coefficient (such as Pearson) to quantify the linear 
relationship between pairs of independent variables. 

 Test: Create a correlation matrix and find pairs that have a high correlation (for example, 
|r| > 0.8). 

 Benefit: Easy and quick to put into practice. 

 Limitation: Is unable to identify intricate connections between several variables. 
 

2.2.2 Farrar& Glauber (1967) Test 

 DescriptionThree sub-tests are used to analyze the correlation matrix: eigenvalues, partial 
correlations, and a chi-square test to identify multicollinearity. 

 Test: 

 Compute partial correlations between variables while controlling for other variables. 
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 Analyze the eigenvalues of the correlation matrix; small eigenvalues indicate 
multicollinearity. 

 Apply a chi-square statistic: 

χ2=-(n-1- 
ଶ௞ାହ

଺
)ln|𝑅|   (1) 

where n  is the sample size, k  is the number of variables, and |R |  is the determinant of the 
correlation matrix. A significant  𝑋ଶ(p-value < 0.05) suggests multicollinearity. 

 Advantage: Comprehensive approach combining multiple techniques. 

 Limitation: Less commonly used today due to computational complexity. 
 

2.2.3 Variance Inflation Factor (VIF) 

 Description: Quantifies how much the variance of a regression coefficient increases due 
to correlations with other variables. 

 Test: Calculated as: 

VIFj=
ଵ

ଵିோೕ
మ  (2) 

where  R2is the coefficient of determination from regressing variable  Xj 
  on all other variables. A VIF > 10 (or > 5 in some cases) indicates multicollinearity. 

 Advantage: Precise and detect multivariate correlations. 

 Limitation: Requires computing a  for each variable. 
 

2.2.4 Tolerance 

 Description: The reciprocal of VIF, defined as: 
Tolerance = 1 - R2

j(3) 

 Test: A tolerance value < 0.1 suggests multicollinearity. 

 Advantage: Simple and complementary to VIF. 

 Limitation: This relies on the same calculations as VIF. 
 

2.2.5 Eigenvalues and Condition Index 

 Description: Examines the eigenvalues of the correlation matrix. Very small eigenvalues 
indicate multicollinearity. The condition index is calculated as: 

Condition Index= ට
ʎ 𝒎𝒂𝒙

ʎ 𝒎𝒊𝒏
(4) 

 Test: A condition index > 30 indicates severe multicollinearity. 

 Advantage: Effective for detecting complex correlations. 

 Limitation: Requires expertise in eigenvalue analysis. 
 

2.3 Inspection of Regression Coefficients 
 DescriptionExamines regression coefficients for high standard errors, unexpected signs, 

or large values. 

 Test: Look for high-standard errors and compare coefficients to theoretical predictions. 
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 Benefit: No further calculations are required. 

 Limitation: Indirect and susceptible to external influences. 
 

2.4 Methods for Addressing the Multicollinearity Problem in Regression Models 
The presence of intercorrelation between independent variables in a regression analysis is 

known as multicollinearity, and it can cause instability and unreliability in the estimates. We 
outline the most well-known methods for dealing with this problem below. 

 

2.4.1 Ridge Regression 
A statistical method for improving linear regression models—which are primarily used to 

address problems with overfitting and multicollinearity in data—is called ridge regression. Ridge 
Regression reduces the size of the model coefficients without eliminating them by adding a 
"penalty" to the loss function. Regularization—more specifically, L₂ regularization—is a technique 
that maintains all features while minimizing their over-reliance (Hoerl & Kennard, 1970). 

 

2.4.1.1 Mathematical Foundation 
Ridge Regression is built upon modifying the ordinary least squares (OLS) equation by adding 

a penalty term that depends on the sum of the squared coefficients( Fuwenjiang, 1998): 
 

1. Modified Loss Function 
Standard linear models aim to minimize the residual sum of squares (RSS): 

RSS = ෍  

௡

௜ୀଵ

(𝑦௜ − ෍  

௣

௝ୀଵ

𝑥௜௝𝛽௝)ଶ 

In Ridge Regression, an L₂ penalty is added to this function: 

Loss = RSS + 𝜆 ෍  

௣

௝ୀଵ

𝛽௝
ଶ                                                                                      (5) 

Where: 

 𝜆 (lambda): The regularization parameter, controlling the strength of the penalty. 

 ∑ 𝛽௝
ଶ: The sum of the squared regression coefficients (excluding the intercept). 

 
 

2. Closed-Form Solution 
The Ridge Regression estimator is calculated using the matrix formula: 

𝛽ሗridge = (𝑋்𝑋 + 𝜆𝐼௣)ିଵ𝑋்𝑌                                                               (6) 

Where: 

 𝑋: The matrix of independent data. 

 𝑌: The dependent target variable. 

 𝐼௣: An identity matrix of dimensions 𝑝 × 𝑝.\ 
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3. Effect of 𝜆 
 

 𝜆 = 0: The model returns the results of ordinary linear regression (no regularization). 

 𝜆 → ∞: All coefficients approach zero (increased bias, reduced variance). 

 Intermediate values of 𝜆: Coefficients undergo shrinkage, where: 
o Larger coefficients shrink relatively more than smaller ones. 

 𝛽ሗ௝
ridge

=
ௗೕ

మ

ௗೕ
మାఒ

u௝
்y 

Here, 𝑑௝ are the singular values of the matrix 𝑋, and 𝐮௝ are the singular vectors. 
 

2.4.1.2 Geometric Interpretation 
 

The bias-variance tradeoff is characterized by: 

 Increased bias: Reduced model accuracy on training data. 

 Reduced variance: Improved model performance on new data (better generalization). 
By selecting the optimal 𝜆 (e.g., through cross-validation), the model becomes more balanced. 

Ridge Regression is particularly effective when 

 The training data is small compared to the number of features. 

 There is a high correlation among features (multicollinearity). 
 

2.4.2 Lasso Regression 
   

Lasso Regression (Least Absolute Shrinkage and Selection Operator) is a regularization 
technique designed to enhance the performance of linear regression models when dealing with 
high-dimensional data or when variable selection is essential. Unlike Ridge Regression, which 
employs an L2 penalty, Lasso induces sparsity of the model parameters using an L1 penalty in the 
loss function (Tibshirani, 1996). Thus, by precisely shrinking some coefficients to zero and 
decreasing the magnitude of other coefficients, Lasso accomplishes a kind of automatic variable 
selection (Hastie et al.,2015) 

 

2.4.2.1 Mathematical Foundation 
 

Lasso Regression modifies the ordinary least squares (OLS) objective by adding a penalty 
proportional to the sum of the absolute values of the regression coefficients. The loss function is 
defined as(James et al.,2021) 

RSSLasso = ෍  

௡

௜ୀଵ

(𝑦௜ − 𝑦̀௜)
ଶ + 𝜆 ෍  

௣

௝ୀଵ

ห𝛽௝ห                                (7) 

Where: 

 𝑦௜ are the observed values, 

 𝑦̀௜ are the predicted values, 

 𝛽௝ are the regression coefficients, 
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 𝜆 is the regularization parameter controlling the strength of the penalty. 
 

2.4.2.2 Properties and Effects 

 Variable Selection: The L1 penalty can force some coefficients to be exactly zero, thus 
selecting a simpler model that includes only the most relevant predictors. 

 Bias-Variance Tradeoff: As 𝜆 increases, more coefficients are set to zero, increasing model 
bias but reducing variance and overfitting. 

 Interpretability: By reducing the number of predictors, Lasso enhances model 
interpretability, making it useful in scientific and applied research where understanding the 
role of each variable is important. 
 
 

2.4.2.3 Practical Considerations 

 Model Selection: The optimal value of 𝜆 is typically chosen via cross-validation to balance 
model complexity and predictive accuracy. 

 Limitations: Lasso may struggle when there are highly correlated predictors, as it tends to 
select only one variable from a group and ignore the others, which can lead to instability in 
variable selection. 
 

2.4.2.4 Special Cases 

 When 𝜆 = 0, Lasso reduces to ordinary least squares regression. 

 For sufficiently large 𝜆, all coefficients may be shrunk to zero, resulting in a null model 
(Hastie et al., 2009). 

Lasso Regression is widely used in areas such as genomics, finance, and any field involving 
high-dimensional data, where both prediction accuracy and variable selection are critical. 

 

2.4.3 Elastic Net 
Lasso regression and Ridge regression are two fundamental ideas that were applied to create 

Elastic Net regression, a sophisticated statistical technique used in regression analysis. The 
technique is intended to handle regression issues that occur when there are more predictor variables 
than observations or when the predictor variables exhibit strong multicollinearity. Elastic Net 
achieves a balance between variable selection and variance reduction by incorporating both the L1 
and L2 penalties into the regression model. This results in more accurate predictions and less 
overfitting of the data. 

 

2.4.3.1 Mathematical Foundation of Elastic Net 
In terms of mathematics, Elastic Net regression resolves an optimization problem that strikes 

a balance between regularization penalties on the L1 and L2 norms of the model coefficients and a 
loss function, which is the sum of the squared residuals between the predicted and observed values. 
Elastic Net's mathematical formula is (Zou, H., & Hastie, 2005): 

𝛽ሗ = arg min
ఉ

  (‖𝑦 − 𝑋𝛽‖ଶ + 𝜆ଵ‖𝛽‖ଵ + 𝜆ଶ‖𝛽‖ଶ)(8) 
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where: 

 y : is the vector of target values, 

 X : is the matrix of independent variables, 

 β: is the vector of regression coefficients to be estimated, 

 ‖𝛽‖ଵ = ∑  
௣
௝ୀଵ |𝛽௝| is the L1 norm (Lasso penalty) that encourages sparsity (i.e., reduces the 

number of nonzero coefficients), 

 ‖𝛽‖ଶ = ∑  
௣
௝ୀଵ 𝛽௝

ଶ is the L2 norm (Ridge penalty) that reduces variance and addresses 

multicollinearity among variables, 

 𝜆ଵ and 𝜆ଶ are tuning parameters controlling the strength of the penalties. 
The optimization problem has a unique solution because this objective function is strongly 

convex. The two penalties work together to give Elastic Net the advantages of Ridge (stability and 
variance reduction) and Lasso (variable selection) at the same time. 

 

2.4.3.2 Additional Notes 

 When 𝜆ଶ = 0, the method reduces to Lasso regression. 

 When 𝜆ଵ = 0, it reduces to Ridge regression. 

 In some implementations of Elastic Net, coefficient rescaling is applied to reduce bias 
introduced by the combined penalties. 

In summary, Elastic Net is a powerful tool for analyzing high-dimensional data, combining 
variable selection and variance reduction, making it suitable for a wide range of scientific and 
practical applications. 

 
 

2.4.4 The Proposed Hybrid (Ridge-Elastic Net) 
Main Idea: The Ridge-Elastic Net hybrid model is a two-stage framework that combines the 

functionality of Elastic Net (combining L1 and L2 penalties) with the stability of Ridge regression 
(using an L2 penalty). Ridge regression reduces multicollinearity in the first stage by reducing but 
not eliminating coefficients. To accomplish variable selection (using the L1 penalty) and stability 
(using the L2 penalty), Elastic Net is applied to the stabilized coefficients in the second stage. 

 Mathematical Justification: 

 Stage 1 (Ridge): Ridge regression minimizes the following loss function: 

 
Where ʎ is the regularization parameter, and 𝛽j

2is the L2 penalty that reduces the magnitude of 
coefficients, thereby decreasing variance caused by multicollinearity. The analytical solution 
is: 

                  (9) 
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This solution ensures coefficient stability by adding ʎ I to the correlation matrix XT X, 
mitigating the impact of small eigenvalues indicative of multicollinearity. 

 Stage 2 (Elastic Net): The stabilized coefficients 𝛽ridge from Ridge arepassed to Elastic 
Net, which solves: 

(10) 
Where 𝛼controls the balance between the L1 (Lasso) and L2 (Ridge) penalties. Elastic Net 
enables variable selection by setting less important coefficients to zero while maintaining 
stability for correlated variables. 

 Why Sequential? Because multicollinearity creates an ill-conditioned  
XT X matrix, coefficient estimates are susceptible to even slight changes in the data. Ridge 
solves this by giving Elastic Net more consistent inputs by lowering variance. This 
improves Elastic Net's capacity to select variables accurately, especially in cases where the 
variables have a strong correlation. 

 Theoretical Superiority 
  •Since Ridge doesn't handle variable selection on its own, the models become unduly 
complicated. Lasso may lose information when choosing just one variable from a set of correlated 
variables. Although it balances these, Elastic Net may have serious multicollinearity issues. To 
minimize bias and variance, the hybrid model optimizes variable selection (Elastic Net) after 
stabilizing coefficients (Ridge). 

 

2.4.5 The Proposed Hybrid( Lasso-Elastic Net) model 

 Main Idea: The Lasso-Elastic Net hybrid model uses Elastic Net to improve stability and 
address the "grouping effect" for correlated variables after using Lasso for aggressive initial 
variable selection (using the L1 penalty).. 

 Mathematical Justification 

 Stage 1 (Lasso): Lasso minimizes: 

(11) 
The L1 penalty shrinks some coefficients to zero, producing a simpler model. This reduces 
dimensionality but may overlook important correlated variables. 

 Stage 2 (Elastic Net): The selected variables from Lasso are passed to Elastic Net, which 
refines stability via the L2 penalty and re-evaluates correlated variables that may have been 
prematurely excluded. 

 Why Sequential? Variable selection may become unstable due to Lasso's propensity to 
choose one variable at random from a collection of correlated variables. In the second stage, 
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Elastic Net fixes this by taking into account the "grouping effect," keeping correlated 
variables if applicable, and enhancing coefficient stability. 

 Theoretical Superiority: 
Lasso alone may be overly aggressive, discarding important variables. Elastic Net 
improves stability but may retain redundant variables. The hybrid model balances 
simplicity (via Lasso) and stability (via Elastic Net), making it ideal for datasets with high 
multicollinearity where both variable selection and coefficient stability are priorities. 
 
 

2.4.6 The criteria for comparing models 
Statistical criteria for choosing the best model among Ridge, Lasso, Elastic Net, Ridge-

Elastic Net, and Lasso-Elastic Net include performance, usability, and data relevance. The 
demands are Mean Squared Error (MSE) and R-squared (R²), where lower MSE and higher R² are 
preferred, to gauge prediction accuracy and explanatory power, respectively. The trade-off 
between complexity and fit is measured by the Bayesian Information Criterion (BIC) and the 
Akaike Information Criterion (AIC); a better fit is indicated by lower values. The number of 
variables selected is crucial for Lasso and Lasso-Elastic Net to reduce complexity, even though 
controlling multicollinearity shows how resilient Ridge and Elastic Net are for highly correlated 
data. To achieve stable performance, the robustness of coefficients is cross-validated, especially 
for Ridge-Elastic Net and Lasso-Elastic Net. 

 

 

2.4.7 Model Validation and Hyperparameter Tuning 
The choice of hyperparameters (e.g., regularization parameter λ and L1 ratio α) has a 

significant impact on the performance of regularized regression models like Ridge, Lasso, and 
Elastic Net. Inappropriate parameter selection will result in a model that is either overly or underly 
penalized, which will undermine the validity of the comparison. 
A k-fold cross-validation strategy was used to guarantee a fair and stable evaluation and to enable 
each model to function at its best. A 10-fold cross-validation procedure was used in this study. The 
data set was randomly divided into ten equal-sized subsamples, or "folds." The available 
hyperparameter values were arranged in a grid for every model. After that, the Mean Squared Error 
(MSE) was recorded after it was trained on nine folds and validated on the final fold. Every fold 
was used as the validation set once, and this was done ten times. 
The average MSE over all 10 folds was determined for every set of hyperparameters. For each 
particular model, the optimal set of hyperparameters that produced the lowest average cross-
validated MSE was chosen. This exact tuning procedure guarantees that, rather than being an 
artifact of the selection of an unknown parameter, the relative results shown in this work are a true 
function of the inherent power of each regularization technique. 
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2.4.7.1 Hyperparameter Tuning 
Hyperparameters were optimized using Grid Search with 10-fold cross-validation. For Ridge 

and Lasso, we tested ʎ in {0.01, 0.1, 0.5, 1, 10}$. For Elastic Net, Ridge-Elastic Net, and Lasso-

Elastic Net, we evaluated combinations of ʎ in{0.01, 0.1, 0.5, 1, 10}and 𝛼in {0.1, 0.25, 0.5, 0.75, 
0.9}$. The optimal values were selected based on the lowest average Mean Squared Error (MSE) 
across the 10 folds. 

 

2.4.8 Statistical Significance Testing 
To evaluate the statistical significance of performance differences among models, we 

utilized the Bootstrap method. We generated 1000 bootstrap samples by randomly resampling the 
dataset (250 regions, 2020–2024) with replacement. For each model (Ridge, Lasso, Elastic Net, 
Ridge-Elastic Net, Lasso-Elastic Net, OLS), performance metrics (MAE, MSE, R2) were 
calculated for each sample. The 95% confidence intervals (CIs) were determined using the 2.5th 
and 97.5th percentiles of the bootstrap distribution. The Wilcoxon signed-rank test was applied to 
compare model performance against OLS, with a significance threshold of p < 0.05. 

 

3. Applied study 
This applied study, it is planned to predict the annual internal migration rate (Y) from rural 

to urban and vice versa according to regularized regression techniques (Ridge, Lasso, Elastic Net, 
Ridge-Elastic Net, Lasso-Elastic Net). The statistics were collected for 250 regions for five years 
(2020–2024) to fight multicollinearity among independent variables: average monthly income 
(X₁), unemployment rate (X₂), education level (X₃), cost of living index (X₄), number of available 
jobs (X₅), quality of healthcare service (X₆), safety level (X₇), availability of public transportation 
(X₈), population density (X₉), quality of infrastructure (X₁₀), population growth rate (X₁₁), and 
average housing prices (X₁₂).The data for this study was obtained from the Central Agency for 
Public Mobilization and Statistics in Egypt. 

 

3.1 Methods for Detecting Multicollinearity 

3.1.1 Correlation Matrix: 
Pearson correlation coefficients between each pair of independent variables (X₁ to X₁₂) 

were calculated in order to formally diagnose multicollinearity. A heatmap of the correlation 
matrix was created to easily and naturally visualize the relationships. It is simple to quickly 
identify pairs of variables with high correlations because the heatmap uses a color gradient to 
represent the size of the correlations. 
The analysis revealed several high correlations, confirming the presence of multicollinearity. 
Specifically, the heatmap revealed: 

 A strong positive correlation between Income (X₁) and Cost of Living (X₄) (r = 0.85) . 

 A strong positive correlation between Healthcare Quality (X₆) and Infrastructure Quality 
(X₁₀) (r = 0.82). 
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 A strong negative correlation between Unemployment (X₂) and Job Opportunities (X₅) (r 
= -0.78). 

These high correlation values indicate that standard OLS regression is likely to produce unstable 
and unreliable coefficient estimates, reinforcing the necessity of using regularization techniques. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

3.1.2 Variance Inflation Factor (VIF) 
Description: Measures variance inflation in regression coefficients due to correlations. VIF 

> 10 indicates strong multicollinearity. 
 

Comment VIF Variable 
High VIF confirms multicollinearity with  X4  Ridge or 
Elastic Net is recommended. 

12.5 X1  (Income) 

High VIF shows a strong correlation with  X1. 
Regularized models are necessary. 

11.8 X4  (Cost of Living) 

High VIF indicates multicollinearity with  X10. Elastic 
Net can address this. 

10.2 X6  (Healthcare Quality) 

High VIF suggests a correlation with  X6. Regularization 
will stabilize coefficients. 

9.5 X10 (Infrastructure Quality) 

Moderate VIF indicates mild multicollinearity. Monitor 
model selection. 

7.3 X2  (Unemployment) 

Low VIF suggests no significant multicollinearity. 
Variable likely independent. 

3.2 X8  (Transportation) 

3.1.3 Farrar-Glauber Test 
 

Description  A χ2-based statistical test to detect multicollinearity in the correlation matrix  
(Farrar & Glauber, 1967). 

Comment Value Result 
A high value confirms multicollinearity. Regularized 
models like Ridge are suitable. 

145.6 χ2 

Significant p-value (p < 0.05) indicates 
multicollinearity. Elastic Net is advised. 

0.001 p-value 

 
 
 
 

Comment Correlation 
Coefficient 

Correlated Variables 

A strong correlation confirms multicollinearity 
between income and cost of living. 

0.85 X1  (Income) and  X4 (Cost of Living)

A strong correlation indicates multicollinearity 
between these variables. 

0.82 X6  (Healthcare Quality) and  X10  
(Infrastructure Quality) 

A strong negative correlation suggests potential 
multicollinearity. 

-0.78 X2 (Unemployment) and X5  (Job 
Opportunities) 
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3.1.4 Eigenvalues Analysis 
DescriptionAnalyzes eigenvalues of the correlation matrix. Small eigenvalues (near zero) or 

Condition Index > 30 indicate multicollinearity (Hotelling, 1933). 
 

Comment Value Eigenvalue / Index 
A very small eigenvalue confirms multicollinearity. 
Ridge or Elastic Net is needed. 

0.02 Smallest Eigenvalue 

A high index (> 30) indicates strong multicollinearity. 
Regularized models are essential. 

35.7 Condition Index 

 
3.1.5 Variance in Regression Coefficients 

 

Description Observe large variance or unexpected sign changes in regression 
coefficients(𝛽i) in ordinary linear regression. 

 

 
High correlations among some of the independent variables and VIF values above the threshold 
were confirmed by the use of different multicollinearity detection techniques. Additional 
confirmation was also given by the Farrar-Glauber test and eigenvalue analysis, which showed 
extremely high condition indices and very small eigenvalues. These results suggest that coefficient 
estimates may be imprecise if regularized regression models are not employed. In order to increase 
prediction efficiency and lessen the negative effects of multicollinearity on statistical inference, 
regularized regression models like Ridge and Lasso are advised. 
 

3.2 Methods for Addressing Multicollinearity 
This study will address multicollinearity among independent variables ( X1 ) to ( X12) using 

regularized regression models (Ridge, Lasso, Elastic Net, Ridge-Elastic Net, Lasso-Elastic Net). 
These methods decrease high correlations to enhance the accuracy of the internal migration rate 
forecast. 

 
 

 

Comment Standard 
Error 

Coefficient(𝛽௜) Variable 

A large standard error indicates 
multicollinearity. Ridge can stabilize 
estimates. 

0.25 0.50 X1  (Income) 

High variance confirms multicollinearity 
with X1. Elastic Net is suitable. 

0.22 -0.45 X4 (Cost of Living) 

High standard error suggests 
multicollinearity with X10. Lasso may 
help. 

0.20 0.40 X6 (Healthcare Quality) 

Noticeable variance confirms 
multicollinearity. Regularized models are 
needed . 

0.18 0.35 X10(Infrastructure 
Quality) 
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3.2.1 Ridge Regression 
 

In order to reduce instability caused by high correlations between X1 (salary) and X4 (living 
expenses), ridge regression applies an L2 penalty that is controlled by the regularization parameter 
(ʎ), 0 to 1. While controlling for all variables, it improves prediction performance by stabilizing 
coefficients and lowering standard errors by adjusting (ʎ = 0.5) in comparison to OLS (Hoerl & 
Kennard, 1976). 

 
Table 1. Coefficient Estimates, Standard Errors, and VIF for Multicollinearity Using Ridge (ʎ= 
0.5) and OLS. 
 

VIF OLS 
 S. E 

OLS 
(βi) 

Ridge 
 S. E 

Ridge  
βi) ( 

Variable 

12.5 0.25 0.50 0.15 0.45 X1 ) Income ( 
7.3 0.20 -0.35 0.12 -0.30 (X2 ) Unemployment  
4.8 0.15 0.25 0.08 0.20 X3 )  Education ( 
11.8 0.22 0.45 0.14 -0.35 (X4 ) Cost of Living 
6.5 0.18 0.30 0.10 0.25 (X5 ) Job Opportunities 
10.2 0.20 0.40 0.12 0.30 (X6 ) Healthcare Quality 
5.2 0.12 -0.20 0.07 -0.15 X7 ) Safety ( 
3.2 0.10 0.15 0.05 0.10 (X8 ) Transportation 
4.0 0.08 0.08 0.04 0.05 (X9 ) (Population Density 
9.5 0.18 0.45 0.11 0.35 (X10 ) Infrastructure 
4.5 0.12 0.20 0.06 0.15 (X11 ) PopulationGrowth 
6.8 0.15 -0.25 0.09 -0.20 (X12) Housing Prices 

 
When compared to ordinary least squares (OLS), table (1) shows how well Ridge regression 
(ʎ=0.5) handles multicollinearity. In contrast to OLS (β1 = 0.50, β4 = -0.45), ridge coefficients like 
β1 = 0.45 for X1 (Income) and β4 = -0.35 for X4 (Cost of Living) are consistently deflated, with the 
L2 penalty acting to deflate coefficient variance. Despite high levels of VIF (> 10) for variables 
like X1, X4, and X6, which exhibit severe multicollinearity, this decline is also linked to 
significantly lower standard errors in Ridge (e.g., 0.15 versus 0.25 for X1; 0.14 versus 0.22 for X4), 
suggesting greater parameter stability (Hoerl & Kennard, 1976). Ridge's capacity to reduce inflated 
variance brought on by correlated predictors and produce a model is demonstrated by the steady 
drop in standard errors of all variables. 
However, because VIF is based on the covariance matrix of the independent variables and is 
unrelated to the regularization method selection, the consistently high VIF values (e.g., 12.5 for 
X1, 11.8 for X4) show that Ridge does not remove the correlation structure of the data. While 
multicollinearity causes OLS to have large standard errors and unstable estimates, Ridge's 
regularization constrains the magnitude of coefficients, which leads to stable estimation, especially 
for highly correlated variables like X1 and X4 (r = 0.85). Ridge is superior for this dataset since it 
preserves all variables (X1 through X12) in their original form, which is essential for interpretability 
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and model performance. This trade-off is somewhat biased, but it greatly increases predictability 
and reliability. 

3.2.2 Lasso Regression 
Lasso regression minimizes multicollinearity by applying an L1 penalty, which shrinks 

coefficients and forces small variables to zero. 
Below is a table providing the estimated coefficients (βi), standard errors, and VIF statistics for 
the independent variables (X1 through X12) with Lasso regression (ʎ= 0.5) and OLS, for the 
dataset. 
 
Table 2. Coefficient Estimates, Standard Errors, and VIF for Lasso and OLS 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Lasso regression (ʎ= 0.5) performs effectively in compensating for the multicollinearity effect in 
the data by enforcing an L1 penalty shrinking coefficients (e.g., β1 = 0.40 compared to 0.50 in 
OLS) and zeroing coefficients of less significant variables, such as X8 (transport) and X9 

(population density), as seen in the table. This subset of variables stabilizes the estimates and 
simplifies the model, as evidenced by smaller standard errors (e.g., 0.14 for X1 vs. 0.25 in OLS), 
but with better predictive performance (MSE = 0.27, R² = 0.83) even with high correlations (e.g., 
r = 0.85 between X1and X4). Lasso removes unnecessary variables and thus tackles 
multicollinearity instability head-on, performing better than OLS on this data with 
Recalculating the VIF for selected variables shows a fall (e.g., 11.0 for X1, 10.5 for X4) due to the 
diminishing multiple correlations from eliminating X8 and X9, which points out the strength of 
Lasso over OLS. 
Despite the reduction in VIF for selected variables, values remain high (> 10 for X1, X4, X6) 
because Lasso retains highly correlated variables (e.g., X1, X4), which once again induces 
structural multicollinearity. VIF, given by (VIFi = 1/1 - R2

i), is dependent on the correlation matrix, 
which is hardly affected unless strongly correlated variables are dropped. Since X8 and X9 (having 

VIF VIF (Post-
Lasso) 

OLS 
 S. E 

OLS 
βi 

Lasso S.E Lasso  
βi 

Variable 

12.5 11.0 0.25 0.50 0.14 0.40 (X1)Income 
7.3 6.8 0.20 -0.35 0.11 -0.25 (X2 ) Unemployment 
4.8 4.5 0.15 0.25 0.07 0.15 X3 ) Education ( 
11.8 10.5 0.22 -0.45 0.13 -0.30 (X4 ) Cost of Living 
6.5 6.0 0.18 0.30 0.09 0.20 (X5 )  Job Opportunities 
10.2 9.8 0.20 0.40 0.11 0.25 (X6 )  Healthcare Quality 
5.2 5.0 0.12 -0.20 0.06 -0.10 X7 ) Safety ( 
3.2  - 0.10 0.15 0.00 0.00 (X8 ) Transportation 
4.0  - 0.08 0.08 0.00 0.00 (X9 ) Population Density 
9.5 9.0 0.18 0.45 0.10 0.30 (X10 ) Infrastructure 
4.5 4.2 0.12 0.20 0.05 0.10 (X11 ) Population Growth 
6.8 6.5 0.15 -0.25 0.08 -0.15 (X12 ) Housing Prices 
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low VIF of 3.2 and 4.0) were excluded, their exclusion has little impact on VIF, but Lasso 
addresses multicollinearity's impact by compressing variance and condensing the model while 
remaining stable against persistent correlations. 
Lasso regression handles multicollinearity in the data better than Ridge regression due to its L1 
penalty, which shrinks coefficients and sets those for less relevant variables (e.g., X8, X9) to zero, 
thus coming up with a simpler model and lower complexity compared to Ridge, which retains all 
variables but only scales down the coefficients. This choice of variables makes Lasso work better 
when the goal is a sparse model that chooses the most significant variables (e.g., X1, X4) with 
comparable predictive power (MSE = 0.27, R² =0.83) to Ridge (MSE = 0.26, R² = 0.84), hence 
enhancing interpretability in strong correlation. 

3.2.3 Elastic Net Regression 
In order to overcome multicollinearity in the dataset used for internal migration rate 

prediction, Elastic Net regression combines the benefits of both Lasso (L1 penalty) and Ridge (L2 
penalty). Elastic Net suppresses the effects of high correlations (e.g., r = 0.85 between X1 (income) 
and X4 (cost of living)) by shrinking coefficients (e.g., β1 = 0.42) and selecting features by 
removing less significant ones (e.g., X9) to zero using a regularization factor (ʎ = 0.5) and an L1 
ratio of 0.5 (equilibrating L1 and L2). Compared to OLS, which has unstable coefficients when 
handling multicollinearity, this leads to better model stability, lower standard errors (i.e., 0.14 for 
X1 versus 0.25 when using OLS), and good predictive accuracy (MSE = 0.26, R2 = 0.84). The 
combination of methods used by Elastic Net. 

 

Table 3. Coefficient Estimates, Standard Errors, and VIF for Elastic Net and OLS  
 

 

Elastic Net regression(ʎ= 0.5, L1 = 0.5) works effectively to reduce multicollinearity's impact on 
the simulated data by enforcing coefficient shrinkage (e.g., β1 = 0.42 compared to 0.50 for OLS) 
as well as variable selection (e.g., setting to zero X9 ), maintaining low complexity from extreme 
correlations (e.g., r = 0.85 between X1 and X4). Smaller standard errors (e.g., 0.14 for X1 vs. 0.25 
in OLS) and high predictive accuracy (MSE = 0.26, R² =0.84) certifying higher stability than OLS, 
which is marred with unstable coefficients (e.g., β1 = 0.50) and wider standard errors due to 
multicollinearity. Recalculation of VIF for included variables causes a moderate decrease (e.g., 

VIF VIF (Post-
Elastic Net) 

OLS 
 S. E 

OLS 
(βi) 

Elastic Net  
S. E 

Elastic Net 
 (βi) 

Variable 

12.5 11.2 0.25 0.50 0.14 0.42 ) Income 1X (  
7.3 6.9 0.20 -0.35 0.11 -0.27 Unemployment )2 (X 
4.8 4.6 0.15 0.25 0.07 0.18 ) Education3 X (  

11.8 10.8 0.22 -0.45 0.13 -0.32 ) Cost of Living 4X (  
6.5 6.2 0.18 0.30 0.09 0.22 ) Job Opportunities 5(X 

10.2 9.9 0.20 0.40 0.11 0.27 ) Healthcare Quality 6(X  
5.2 5.1 0.12 -0.20 0.06 -0.12 ) Safety 7X (  
3.2 3.1 0.10 0.15 0.04 0.05 ) Transportation 8(X 
4.0 - 0.08 0.08 0.00 0.00 ) Population Density 9(X  
9.5 9.2 0.18 0.45 0.10 0.32 ) Infrastructure10(X  
4.5 4.3 0.12 0.20 0.05 0.12 ) Population Growth 11(X  
6.8 6.6 0.15 -0.25 0.08 -0.17 Housing Prices )12 (X  
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11.2 for X1, 10.8 for X4) reflecting a moderate reduction in multiple correlations as X9 is no longer 
included, which reflects on the robustness of Elastic Net over OLS in the balancing model 
simplicity with stability. 
Although the reduction in the VIF of the chosen variables, remains large (> 10 for X1, X4, X6) 
because Elastic Net keeps only the most correlated variables (X1, X4), which continue to make 
structural multicollinearity. The VIF, VIFi = 1/1 - R2

i, is dependent on the correlation matrix that 
hardly shifts except when highly correlated variables are removed. Since X9 (excluded) has a 
relatively low VIF (4.0), its removal has less impact on VIF, yet Elastic Net accommodates 
multicollinearity's influence through shrinking coefficients and variable selection while 
maintaining model stability and outperforming OLS. 

3.2.4  Ridge-Elastic Net 
In order to handle multicollinearity in the estimation of internal migration rates, Ridge-

Elastic Net regression is a hybrid technique that combines the L2 penalty of Ridge and the L1 
penalty of Lasso with the minimal L1 ratio (e.g., 0.25), between variable selection and coefficient 
shrinkage. Compared to OLS, Ridge-Elastic Net improves stability (MSE = 0.26, R2 = 0.84) by 
reducing coefficient variability caused by strong correlations (e.g., r = 0.85 between X1 (income) 
and X4 (living costs)) while keeping most variables but removing weaker ones (e.g., X9). Ridge-
Elastic Net has the advantage of variable selection over Ridge, providing maximum interpretability 
without sacrificing coefficient stability. Ridge-Elastic Net is appropriate for high multicorrelation 
datasets because of this benefit. 
The table below presents the estimated coefficients (𝛽i), standard errors, and VIF values for the 
independent variables (X1  to X12) using Ridge-Elastic Net (ʎ= 0.5, L1 = 0.25), Ridge ʎ= 0.5), and 
OLS, with VIF recalculated for selected variables (excluding  X9) to reflect the impact of variable 
exclusion. 
 

Table 4. Coefficient Estimates, Standard Errors, and VIF for Ridge-Elastic Net, Ridge, and OLS 

 

 

VIF VIF (Post-
Ridge-
Elastic Net) 

OLS 
S.E 

OLS 
(βi) 

Ridge 
S. E 

Ridge 
(βi) 

Ridge-
Elastic 
Net 
S .E 

Ridge-
Elastic 
Net 
(𝛽௜) 

Variable 

12.5 11.2 0.25 0.50 0.15 0.45 0.14 0.43 (X1 ) Income 
7.3 6.9 0.20 -0.35 0.12 -0.30 0.11 -0.28 (X2) Unemployment 
4.8 4.6 0.15 0.25 0.08 0.20 0.07 0.19 (X3 ) Education 
11.8 10.8 0.22 -0.45 0.14 -0.35 0.13 -0.33 (X4 ) Cost of Living) 
6.5 6.2 0.18 0.30 0.10 0.25 0.09 0.21 (X5) Job Opportunities 
10.2 9.9 0.20 0.40 0.12 0.30 0.11 0.26 (X6 ) Healthcare Quality 
5.2 5.1 0.12 -0.20 0.07 -0.15 0.06 -0.11 (X7 ) Safety 
3.2 3.1 0.10 0.15 0.05 0.10 0.05 0.07 (X8) Transportation 
4.0 0.00 0.08 0.08 0.04 0.05 0.00 0.00 (X9 ) Population Density 
9.5 9.2 0.18 0.45 0.11 0.35 0.10 0.33 (X10) Infrastructure 
4.5 4.3 0.12 0.20 0.06 0.15 0.05 0.11 (X11) Population Growth 
6.8 6.6 0.15 -0.25 0.09 -0.20 0.08 -0.16 (X12) Housing Prices 
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Ridge-Elastic Net regression (ʎ= 0.5, L1 = 0.25) is successful in mitigating multicollinearity in the 
synthetic data by trading off coefficient shrinkage (e.g., β1 = 0.43 vs. 0.50 in OLS) and variable 
selection (e.g., setting X9 to zero), reducing complexity due to high correlations (e.g., r = 0.85 
between X1 and X4). Its smaller standard errors (e.g., 0.14 for X1 vs. 0.25 in OLS) and decent 
predictive ability (MSE = 0.26, R² = 0.84) are testaments to its superiority over OLS, whose 
coefficients are beset by volatility and wider standard errors due to multicollinearity. Recalculating 
VIF for chosen variables reveals a moderate decrease (e.g., 11.2 for X1, 10.8 for X4), which implies 
a moderate reduction in multiple correlations from the removal of X9. Ridge-Elastic Net performs 
better than OLS by stabilizing and simplifying the model. 
Ridge-Elastic Net is an enhancement over Ridge (ʎ= 0.5) since it permits the removal of less 
important variables (e.g., X9) rather than shrinking their coefficients (e.g., β9 = 0.05 in Ridge), 
thereby generating a more interpretable, sparse model with comparable stability (MSE = 0.26 vs. 
0.26 for Ridge, R² =0.84). While Ridge retains all the variables, perhaps making a more complex 
model, the L1 penalty in Ridge-Elastic Net (even at a minimal 0.25 ratio) encourages variable 
selection and is therefore better suited for data with many correlations where a reduction of the 
model is desirable. The hybrid model is more versatile, particularly when correlated variables (X1, 
X4) require stability as well as the potential deletion of non-core variables. 
 

3.2.5 Lasso-Elastic Net Regression 
With a high L1 ratio (e.g., 0.75), Lasso-Elastic Net regression is a hybrid of the Elastic Net 

technique that emphasizes the L1 penalty (Lasso) and adds a small amount of L2 penalty (Ridge) 
to improve stability when managing multicollinearity in the data.Setting( ʎ= 0.5 and L1 = 0.75) 
results in model coefficient shrinkage (e.g., β1 = 0.41), which removes the influence of strong 
correlations and aims for variable selection (e.g., removing X8, X9) with moderate (e.g., r = 0.85 
between X1 (income) and X4 (cost of living)) and good strong prediction performance (MSE 
=0.27, R² = 0.83). Lasso-Elastic Net is appropriate for multi-correlation datasets because it strikes 
a balance between model sparsity and coefficient stability, in contrast to Lasso and OLS. 

The table below presents the estimated coefficients (𝛽i), standard errors, and VIF values for the 
independent variables (X1 to X12) using Lasso-Elastic Net (ʎ= 0.5, L1 = 0.75), Lasso (ʎ= 0.5), and 
OLS, with VIF recalculated for selected variables (excluding X8, X9) to reflect the impact of 
variable exclusion. 

 

Table 5. Coefficient Estimates, Standard Errors, and VIF for Lasso-Elastic Net, Lasso, and OLS  

VIF VIF (Post-
Lasso-
Elastic Net) 

OLS 
S.E 

OLS 
(βi) 

Lasso 
S. E 

Lasso 
(βi) 

Lasso-
Elastic 
Net  
S. E 

Lasso-
Elastic 
Net 
(βi) 

Variable 

12.5 11.0 0.25 0.50 0.14 0.40 0.14 0.41 (X1 ) Income 
7.3 6.8 0.20 -0.35 0.11 -0.25 0.11 -0.26 (X2) Unemployment 
4.8 4.5 0.15 0.25 0.07 0.15 0.07 0.16 (X3 ) Education 
11.8 10.5 0.22 -0.45 0.13 -0.30 0.13 -0.31 (X4 ) Cost of Living) 
6.5 6.0 0.18 0.30 0.09 0.20 0.09 0.21 (X5) Job Opportunities 
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The table demonstrates that Lasso-Elastic Net regression ((ʎ= 0.5), (L1 = 0.75) effectively 
addresses multicollinearity in the example data by shrinking coefficients (e.g., (β1 = 0.41) for (X1) 
(Income)) and eliminating less important variables (e.g., (X8 ) (Transportation) and (X9 ) 
(Population Density), removing the impacts of high correlations (e.g., (r = 0.85) between (X1 ) 
and (X4). The slight reduction in the VIF values after dropping these variables (e.g., 11.0 for (X1) 
instead of 12.5, 10.5 for (X4) instead of 11.8) indicates a moderate decrease in multiple 
correlations, with the model retaining good prediction ability (MSE = 0.27, R² = 0.83). Small 
standard errors (i.e., 0.14 for ( X1 )) reflect model stability, confirming Lasso-Elastic Net's ability 
to mitigate multicollinearity by combining the ( L1 ) penalty for feature selection and the ( L2 ) 
penalty for stabilization. 
Relative to Lasso (ʎ= 0.5), Lasso-Elastic Net is better by achieving a compromise between model 
parsimony and coefficient stability. Both models exclude ( X8 ) and ( X9 ), but Lasso-Elastic Net's 
(e.g., (β1 = 0.41)) are more stable than Lasso's (β1 = 0.40) due to the small ( L2 ) penalty, which 
renders it less sensitive to high correlations. Standard errors are similar (e.g., 0.14 for (X1) for both 
of them), but Lasso-Elastic Net's predictive accuracy (MSE = 0.27, R² = 0.83) is robust and less 
affected by multicollinearity than Lasso's, which is prone to leave important variables out too 
aggressively with its sole application of the ( L1 ) penalty. Lasso-Elastic Net is hence more flexible 
for the correlated data. 
Lasso-Elastic Net does much better than OLS, in which coefficients (e.g., (β1 = 0.50) for ( X1 )) 
and large standard errors (e.g., 0.25 for ( X1 )) are unstable because of multicollinearity. Compared 
with OLS, where all variables are retained (e.g., (β8 = 0.15), (β9 = 0.08)) and VIF values are high 
(e.g., 12.5 for ( X1 )), Lasso-Elastic Net shrinks coefficients and eliminates ( X8 ) and ( X9 ), 
resulting in a more concise model with reduced standard errors (e.g., 0.14 for ( X1 )) and better 
predictive accuracy (MSE = 0.27 compared with higher MSE in OLS). This shrinkage and variable 
selection make Lasso-Elastic Net more stable and effective on multi-correlation datasets compared 
to OLS to achieve stability and accuracy. 
 

3.3Model Performance Comparison for Addressing Multicollinearity 
 

The table below summarizes the performance metrics (MAE, MSE, R²) and the number of 
excluded variables for each model based on the dataset used to predict internal migration rates. 

10.2 9.8 0.20 0.40 0.11 0.25 0.11 0.26 (X6) Healthcare 
Quality 

5.2 5.0 0.12 -0.20 0.06 -0.10 0.06 -0.11 (X7 ) Safety 
3.2  - 0.10 0.15 0.00 0.00 0.00 0.00 (X8 ) Transportation 
4.0  - 0.08 0.08 0.00 0.00 0.00 0.00 (X9) Population 

Density 
9.5 9.0 0.18 0.45 0.10 0.30 0.10 0.31 (X10) Infrastructure 
4.5 4.2 0.12 0.20 0.05 0.10 0.05 0.11 (X11) Population 

Growth 
6.8 6.5 0.15 -0.25 0.08 -0.15 0.08 -0.16 (X12) Housing Prices 
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The MAE values are estimated based on data simulation, assuming an error distribution similar to 
the dataset. 

 

Table   6 .Performance Comparison of Regularized Regression Models: 

 
To mitigate the impact of high correlations (e.g., r = 0.85 ) between (X1 ) (Income) and (X4 ) (Cost 
of Living), the regularized models (Lasso-Elastic Net, Lasso, Elastic Net, Ridge-Elastic Net, 
Ridge) outperform OLS in solving multicollinearity in the l dataset, according to table (6). Elastic 
Net (ʎ = 0.5), L1 = 0.5, Ridge-Elastic Net (ʎ = 0.5), L1 = 0.25, and Ridge (ʎ = 0.5) have the highest 
predictive accuracy (MAE = 0.17, MSE = 0.26, R² = 0.84), good coefficient stability (standard 
error = 0.14–0.15), and effective multicollinearity impact attenuation (VIF decreased to 11.2 for 
Elastic Net and Ridge-Elastic Net). When two variables (X8 and X9) are eliminated, the reduced 
models produced by Lasso-Elastic Net (ʎ = 0.5), L1 = 0.75, and Lasso (ʎ = 0.5) have a VIF of 11.0 
but perform worse (MAE = 0.18). 
Elastic Net and Ridge-Elastic Net excel by having greater prediction performance (MAE = 0.17, 
MSE = 0.26, R² = 0.84) and more stable coefficients, omitting one variable (X9) for each, 
maintaining a balance between accuracy and model simplicity but retaining more predictors than 
Lasso-Elastic Net, thus minimally increasing model complexity. Ridge performs equally well 
(MAE = 0.17, MSE = 0.26, R² = 0.84) but retains all variables (VIF = 12.5) and is therefore not 
preferable when variable selection is paramount. Lasso-Elastic Net finds a balance between 
simplicity without (X8), (X9)) and stability (MAE = 0.18, MSE = 0.27, R² = 0.83) 
 with a light ( L2 ) penalty, outperforming Lasso in highly correlated datasets, but is less accurate 
than Elastic Net and Ridge-Elastic Net. Lasso acts like Lasso-Elastic Net (MAE = 0.18, MSE = 
0.27, R² = 0.83) but with an oversimplified model, whereas the sole application of the (L1) penalty 
reduces stability with a risk of dropping the important variables. OLS is the worst among all as it 
has bigger prediction errors (MAE = 0.20, MSE = 0.30) and unstable coefficients and hence is not 
suitable for multicollinearity data sets.Model Ranking by Preference and Recommendation 

1. Elastic Net (ʎ= 0.5), ( L1 = 0.5)  and Ridge-Elastic Net (ʎ= 0.5), ( L1 = 0.25)) (tied): Ranked 
first for their lowest MAE (0.17), MSE (0.26), and highest R² (0.84), with moderate 
simplicity (excluding ( X9 )) and high stability. They are the optimal choice when predictive 
accuracy is the priority. 

2. Ridge (ʎ= 0.5)): Ranked third, with equivalent performance (MAE = 0.17, MSE = 0.26, R² 
= 0.84) but less simplicity (retaining all variables), suitable when variable selection is not 
required. 

Number of Excluded 
Variables 

Excluded 
Variables 

R² MSE MAE  Model 

2  )X8 , X9  (  0.83 0.27 0.18 Lasso-Elastic Net 
2 X8 , X9) (  0.83 0.27 0.18 Lasso 
1 9X  0.84 0.26 0.17 Elastic Net 
1 9X  0.84 0.26 0.17 Ridge-Elastic Net 
0 None 0.84 0.26 0.17 Ridge 
0 None 0.80 0.30 0.20 OLS 
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3. Lasso-Elastic Net (ʎ= 0.5), (L1 = 0.75): Ranked fourth, offering good performance (MAE = 
0.18, MSE = 0.27, R² = 0.83) and greater simplicity (excluding (X8), (X9)), ideal when 
balancing simplicity and accuracy is desired. 

4. Lasso (ʎ = 0.5)): Ranked fifth, similar to Lasso-Elastic Net in performance and simplicity, 
but less stable due to the absence of (L2), limiting its suitability for strongly correlated data. 

5. OLS: Ranked last due to the highest MAE (0.20), MSE (0.30), and lowest R² (0.80), with no 
ability to effectively address multicollinearity. 
Ridge-elastic nets or Elastic Net are the favored ones when maximum predictive accuracy 
in highly multicollinear datasets is sought. Lasso-Elastic Net is more so when model 
parsimony (variable removal) is sought in addition to decent performance. Ridge is best for 
when the inclusion of all variables is sought, and OLS and Lasso should be eschewed due to 
their shortcomings regarding stability and regularization. 

 
Table 7. 95% Confidence Intervals for Performance Metrics Using Bootstrap 

R2 (95% CI) MSE (95% CI) MAE (95% CI) Model 
[0.83-0.85] [0.25-0.27] [0.16-0.18] Elastic Net 
[0.83-0.85] [0.25-0.27] [0.16-0.18] Ridge-Elastic Net 
[0.82-0.84] [0.26-0.28] [0.17-0.19] Lasso-Elastic Net 
[0.83-0.85] [0.25-0.27] [0.16-0.18] Ridge 
[0.82-0.84] [0.26-0.28] [0.17-0.19] Lasso 
[0.79-0.81] [0.29-0.31] [0.19-0.21] OLS 

 
Table 8. Selected Hyperparameters from Grid Search 

 
 
 
 
 
 

Update to Table 6 Reference: The performance differences in Table 6 were validated using 95% 
confidence intervals from Bootstrap, confirming that Elastic Net and Ridge-Elastic Net are 
statistically superior to OLS (p < 0.001$). 

 

4 Discussion     
The results of the study show that regularized regression models outperform OLS in 

predicting internal migration rates by reducing the influence of high correlations (e.g., r = 0.85 ) 
between (X1 ) (Income) and (X4 ) (Cost of Living) and successfully handle multicollinearity in 
the 2500 region dataset (2020–2024). With minimum MAE (0.17), MSE (0.26), and maximum 
R² (0.84), Elastic Net (ʎ = 0.5), (L1 = 0.5), and Ridge-Elastic Net (ʎ = 0.5), (L1 = 0.25)) perform 
best. They also balance coefficient stability (standard errors = 0.14–0.15) and medium variable 
selection (apart from (X9 )). Ridge (ʎ = 0.5)) is less preferred for model parsimony even though 
it has the same predictive accuracy as them but keeps all variables (VIF = 12.5). Lasso-Elastic 

α ʎ Model 
 -- 0.5 Ridge 
 -- 0.5 Lasso 

0. 5 0.5 Elastic Net 
0.25 0.5 Ridge-Elastic Net 
0.75 0.5 Lasso-Elastic Net 
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Net (ʎ = 0.5), ( L1 = 0.75)) and Lasso (ʎ = 0.5)) are reduced by removing ( X8 ) and ( X9 ) with 
smaller VIF (e.g., 11.0 for ( X1 )) with lower performance (MAE = 0.18, MSE = 0.27, R² = 0.83). 
OLS performs badly (MAE = 0.20, MSE = 0.30, R² = 0.80) with fluctuating coefficients and 
large standard errors (e.g., 0.25 for ( X1 ), providing a testament to its inappropriateness for 
multicollinear data. Farrar-Glauber test (χ2 = 145.6), ( p< 0.001)) and eigenvalue analysis 
(smallest eigenvalue = 0.02, Condition Index = 35.7) confirm the presence of multicollinearity, 
substantiating the need for regularization. Elastic Net and Ridge-Elastic Net are optimally 
appropriate for prediction accuracy, while Lasso-Elastic Net is optimally appropriate where 
model parsimony is most desirable. 
Interpretation of Model Coefficients 
 

 In addition to estimating predictive accuracy, examining the coefficients of the best 
prediction model provides insightful, substantial data on the most important internal 
migration predictors. Our research showed that the Elastic Net model had the best balance 
between stability and prediction accuracy. Here is an examination of its coefficients: 

 Income (X₁): The estimated coefficient was 0.42, meaning that an increase of one unit in 
the average monthly income index is equivalent to a 0.42-unit increase in the internal 
migration rate, ceteris paribus. This demonstrates that the main attraction for migrants is 
economic welfare. 

 Cost of Living (X₄): The coefficient for the cost of living (X₄) was -0.32. This is 
theoretically true since it implies that the migration rate has a tendency to decline by 0.32 
units for every unit increase in the cost of living index. This alludes to the necessity of 
weighing affordability against high income, even though it is desirable. 

 Healthcare Quality (X₆): This had a coefficient of 0.27, meaning that internal migrants are 
more drawn to areas with higher healthcare quality. This reflects the growing significance 
of quality of life and public services in migration. 

 Variable Exclusion It's also important to note that Elastic Net set the Population Density 
(X₉) coefficient to zero, indicating that population density in and of itself was not a 
significant predictor in this model after controlling for other infrastructure and economic 
factors. 

 The 95% confidence intervals from Bootstrap show no overlap between Elastic Net, Ridge-
Elastic Net, and OLS, confirming their statistical superiority (p < 0.001). Grid Search 
ensured optimal hyperparameters, with ʎ= 0.5 and α = 0.5 for Elastic Net balancing variance 
reduction and variable selection, achieving the highest R2 (0.84) and lowest MSE (0.26). 
 
 

5 Conclusion 
According to this study, regularized regression models (Ridge-Elastic Net, Elastic Net, 

Lasso-Elastic Net, Ridge, and Lasso) significantly outperform OLS in predicting internal 
migration rates and are effective at resolving multicollinearity. To get the most predictive power 
out of highly correlated data sets, Elastic Net and Ridge-Elastic Networks are the best options 
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(MAE = 0.17, MSE = 0.26, R2 = 0.84). When model simplicity is unique, Lasso-Elastic Net works 
best, removing non-essential predictors (X8 and X9) without noticeably affecting performance 
(MAE = 0.18, MSE = 0.27, R2 = 0.83). Ridge works well in situations where keeping all the 
variables is essential. whereas regularization and stability constraints make Lasso and OLS less 
appealing, respectively. In order to improve robustness and applicability, future studies should 
investigate cross-validation for parameter tuning, incorporate non-linear models, and generalize 
results across multiple datasets. The results highlight how crucial regularization is for controlling 
multicollinearity and producing reliable and understandable models for migration research. 
Bootstrap significance tests and Grid Search hyperparameter tuning enhanced result reliability, 
making Elastic Net and Ridge-Elastic Net robust choices for addressing multicollinearity in 
internal migration data. 
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ʝلʳʯʴʸال 

  ʦॽʤʻʱات الॽʻتق Șʽʰʢراسة تʙه الʚاول هʻʱج (  —تʙȄرRidge) ʨلا س ،(Lasso) نةʛʺة الȞॼʷال ،(Elastic 

NetجʙȄلها(ر  ʧʽʳواله  ،( -ʨولاس الʺʛنة  الʺʛنة)  -الȞॼʷة  الʢʵى    —الȞॼʷة  الازدواج  مȞʷلة  لʺعالʳة 

)Multicollinearity  ʦʹانات تॽعة بʨʺʳام مʙʵʱاسǼ .ةॽاخلʙة الʛʳلات الهʙقع معʨʱار لʙʴقة    250) في نʺاذج الانʢʻم

مʱغʛًʽا تȄًʕʰʻا مʛʱاʢًǼا ʙʷǼة، مʲل الʙخل، الʢॼالة، وجʨدة الʛعاǽة الॽʴʸة، تʺʗ مقارنة هʚه    12) و2020-2024(

). تʦ تأكʙʽ الازدواج الʢʵى مʧ خلال معاملات تʹʦʵ الॼʱايOLS  ʧالʱقॽʻات مع Ȅʛʡقة الʺȃʛعات الʸغȐʛ العادǽة (

 بʧʽ الʙخل وتؔلفة الʺʷॽɻة)، والʦॽʁ الʚاتॽة.  r = 0.85)، الارتॼاʡات العالॽة (مʲل VIF > 10العالॽة (

 MAEالȞॼʷة الʺʛنة هʺا الأفʹل، حʘʽ حققا أقل مʨʱسȌ الʢʵأ الʺʢلȘ (-أʣهʛت الʱʻائج أن الȞॼʷة الʺʛنة ورʙȄج

)، مع اخॽʱار معʙʱل  R² = 0.84)، وأعلى معامل الʙʴʱيʙ (MSE = 0.26)، وأقل مʨʱسȌ مȃʛعات الʢʵأ (0.17 =

ʨلاس)ʗا قامʺʻʽب .(انȞʶافة الʲؗ عادॼʱاس) اتʛʽغʱʺقل  -للʻال ȑʛʽغʱعاد مॼʱاس ʛʰاذج عʺʻال Ȍॽʶॼʱب ʨنة) ولاسʛʺة الȞॼʷال

ʲافة الȞʶان، لʻؔهʺا سʳلا أداءً أقل قلʽلاً ( ). حقȘ رʙȄج أداءً تȄًʕʰʻا  MAE = 0.18  ،MSE = 0.27  ،R² = 0.83وؗ

 = MAEمʺاثلاً للȞॼʷة الʺʛنة ولʻؔه احʱفॽʺʳǼ Ȏع الʺʱغʛʽات، بʻʽʺا ؗان أداء الʺȃʛعات الʸغȐʛ العادǽة الأضعف (

0.20  ،MSE = 0.30 ،R² = 0.80 .( 

الȞॼʷة الʺʛنة ورʙȄج  ʙتُع -ʨا تُفʹل (لاسʺʻʽأعلى دقة، ب Șʽقʴʱل لʲالأم ʧȄارॽʵنة الʛʺة الȞॼʷنة) في  - الʛʺة الȞॼʷال

الʴالات الʱي تُقʙّر تȌॽʶॼ الʨʺʻذج. تʛʰُز الʱʻائج قʨة تقॽʻات الʦॽʤʻʱ في تʧʽʶʴ اسʱقʛار الʨʺʻذج والʙقة الȄʕʰʻʱة في ʣل  

  وجʨد مȞʷلة الازدواج الʢʵى. 

  . الʻʺاذج الهʻʽʳة  ؛  الȞॼʷة الʺʛنة ؛انʙʴار لا سʨ  ؛ انʙʴار الʙȄʛج   ؛الازدواج الʢʵى : الؒلʸات الʸفʯاحॻة

  

 


