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Abstract

This study investigates the application of regularization techniques—Ridge, Lasso, Elastic
Net, and their ensembles (Ridge-Elastic Net and Lasso-Elastic Net)}—to correct multicollinearity
in regression models of forecasting internal migration rates. With a sample dataset of 250 regions
(2020-2024) and 12 highly correlated predictors, such as income, unemployment, and healthcare
quality, we compare these techniques with ordinary least squares (OLS). Multicollinearity is
confirmed with high Variance Inflation Factors (VIF > 10), high correlations (e.g., r = 0.85
between income and cost of living), and eigenvalue. Results show that Elastic Net and Ridge-
Elastic Net are superior, with the lowest MAE (0.17), MSE (0.26), and the highest R? (0.84), while
exhibiting moderate variable selection (excluding population density). Lasso-Elastic Net and
Lasso simplify models to the exclusion of transportation and population density but also yield
slightly poor performance (MAE = 0.18, MSE = 0.27, R? = 0.83). Ridge attains Elastic Net's
prediction performance but retains all variables, while OLS is poor (MAE = 0.20, MSE = 0.30, R?
=0.80). Elastic Net and Ridge-Elastic Net are the best picks for most accuracy, while Lasso-Elastic
Net is preferred in scenarios that appreciate model simplicity. The findings highlight the strength
of regularization in enhancing model stability and predictive accuracy in the presence of
multicollinearity.

Keywords: Multicollinearity; ridge regression; lasso regression; elastic net; hybrid models.

1. introduction

Multicollinearity, characterized by high correlations among independent variables in linear
regression models, poses significant challenges, including unstable coefficient estimates, inflated
variances, and reduced interpretability. These issues often lead to misleading statistical inferences,
as coefficients may exhibit incorrect signs or questionable significance. Regularization techniques,
such as Ridge, Lasso, and Elastic Net, have been widely adopted to mitigate multicollinearity by
penalizing coefficients, thereby enhancing model stability and predictive accuracy. These methods
have proven effective across various fields, including economics, medicine, and social sciences,
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as demonstrated by studies like Addable (2020), who concentrated on ill-conditioned design
matrices. The study concluded that ridge regression effectively lowers variance, Lasso is best for
estimation and selection separately, and Elastic Net combines the advantages of Lasso for
estimation and selection independently. Although Elastic Net outperformed Lasso and Ridge in
regression models, it was surprising that the basic Elastic Net performed better in location models
than the standard Elastic Net. These results show how Elastic Net can effortlessly strike a balance
between variable selection and variance reduction.

According to this,(Usman et al.,2021) used breast cancer survival data from Ahmadu Bello
University Teaching Hospital to compare the predictive power of Ridge, Lasso, and Elastic Net
against ordinary least squares (OLS). While OLS failed because of multicollinearity when all
predictors were used, regularized methods produced significant results. Lasso outperformed Ridge
and Elastic Net with the highest R-squared of 0.3226 and the mean squared error (MSE) of
0.832178. Age (30-59), marital status, and disease stage were significant predictors of survival
time; a longer survival time was associated with Stage 1, while a shorter one was associated with
Stages 2—3. This study highlights situationally dependent method selection and demonstrates how
Lasso functions in particular contexts.

To improve their performance, recent research has investigated combining regularization strategies
with sophisticated analytical techniques. In order to reduce multicollinearity in nonlinear and
nonstationary multivariate time-series data,( Al-Jawarneh ef al.,2021) proposed ELNET-EMD, an
Elastic Net (ELNET) model combined with Empirical Mode Decomposition (EMD). ELNET-
EMD enhanced variable selection and prediction accuracy by splitting predictors into intrinsic
mode functions (IMFs) and a residual component. This approach performed better than OLS-EMD
and Lasso-EMD on simulated data and daily exchange rate datasets, displaying lower error values
(RMSE, MAE, MAPE). Here, we show that this new approach can be applied to complex
multicollinearity problems.

In a simulation study employing high-dimensional data with correlated predictors,( Altelbany ,2022)
compared Elastic Net, Lasso, and Ridge to further bolster Elastic Net's stability. The findings
showed that Elastic Net performed better than Lasso and Ridge, increasing the accuracy of variable
selection and lowering MSE by as much as 12%. Similarly, Elastic Net outperformed Lasso by 10%
in terms of MSE, even when the predictors were correlated (Sari and Sari, 2023). These findings
suggest that the most effective method for lowering multicollinearity is Elastic Net's double-penalty
scheme.

Regularization techniques encounter further challenges when the number of predictors exceeds the
number of observations (p > n). Gana (2022) suggested a generalized ridge regression procedure
that selects significant regressors by dividing the predictor matrix and then using t-ratios. With an
86% and 74% reduction in squared distances from true coefficients for significant and true
coefficients, respectively, and a 99% chance of identifying true regressors, the method performed
better than Elastic Net. Elastic Net, however, maintained its competitiveness, especially in variable
selection stability.(Wang et al.,2023), on the other hand, offered a cohesive method for high-
dimensional regression that covered the best selection of penalty parameters for Lasso, Ridge, and
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Elastic Net. Their simulations demonstrated the value of algorithmic enhancement in
regularization and validated Elastic Net's superiority in variable selection and prediction.

Sari and Sari (2023) compared the Lasso, Elastic Net, and Ridge regularization techniques. Elastic
Net was found to perform better in terms of variable selection and prediction when correlated
predictors were present. The study found that Lasso's mean squared error was 10% higher than
Elastic Net's. Recent studies by( Herawati ef al.,2024) and Kumar and Patel (2024) also commend
Elastic Net's performance. In comparison to Lasso, Elastic Net reduced prediction error by about
14%, according to Kumar and Patel's tests, with highly multicollinear data sets yielding the best
bias-variance trade-off. In comparison to Lasso, Herawati et al. were able to reduce Elastic Net's
MSE by 15%, and Elastic Net demonstrated balanced performance in high-dimensional data.
Furthermore, Elastic Net produced the highest coefficient of determination (60.81%) and the
lowest RMSE (3.3977) when (Nur et al., 2024) applied these techniques to examine infant
mortality rates in South Sulawesi, Indonesia. These outcomes show how Elastic Net can be used
with dependent predictors in complex real-world datasets.

Elastic Net's dominance is further supported by recent studies. Sari and Widyaningsih (2025)
found that Elastic Net performed 12% better than Lasso and Ridge in terms of prediction accuracy
on high-dimensional data with highly correlated predictors. Additionally, stability selection for
Lasso, Ridge, and Elastic Net for Accelerated Failure Time (AFT) models of high-dimensional
survival data was studied by (Khan et al., 2025). Their results showed that, especially when p > n,
stability selection improves variable selection stability by lowering false positives and negatives.
Recent research indicates that Elastic Net with stability selection generated more compact models
and effectively identified important variables in breast cancer data, including PRCI1, age, and
ZNF533.

Despite the extensive literature on regularization, a critical research gap remains in the
comprehensive evaluation of hybrid regularization models, such as Ridge-Elastic Net and Lasso-
Elastic Net, particularly in datasets with high multicollinearity, such as those related to internal
migration rates. Previous studies have primarily focused on individual regularization techniques
(e.g., Sari & Sari, 2023;( Herawati et al., 2024) or their application in specific domains like survival
analysis (Khan et al.,2025) or time-series data (Al-Jawarneh et al., 2021). However, there is a lack
of comparative studies that systematically assess the performance of hybrid models combining the
stability of Ridge with the variable selection capabilities of Lasso or Elastic Net in the context of
internal migration data, where predictors like income, cost of living, and healthcare quality are
highly correlated (e.g., r = 0.85).

This study aims to address this gap by evaluating the effectiveness of hybrid regularization models
(Ridge-Elastic Net and Lasso-Elastic Net) against traditional methods (Ridge, Lasso, Elastic Net,
and OLS) in mitigating multicollinearity and improving model stability and predictive accuracy.
Using a dataset of 250 regions (2020-2024) with 12 highly correlated predictors, we propose and
test novel hybrid approaches to balance coefficient stability and variable selection. The primary
objective is to determine whether these hybrid models outperform classical regularization
techniques in handling multicollinearity, offering more robust and interpretable models for
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predicting internal migration rates. By doing so, this research contributes to the statistical modeling
literature by introducing tailored hybrid solutions for complex, multicollinear datasets. This
research not only advances the theoretical understanding of hybrid regularization but also provides
practical insights for policymakers analyzing migration patterns in highly correlated datasets.

The primary objective of this study is to propose and evaluate hybrid regularization models to
outperform classical methods in addressing multicollinearity.

2. Methodology

Multicollinearity occurs in regression analysis when independent (predictor) variables show
high or quasi-linear intercorrelations. Multicollinearity raises questions about the coefficient
estimates without altering the model's predictability because it makes it challenging to discern the
distinct effects of each independent variable on the dependent variable.

2.1 Impact of Multicollinearity on Parameters

The problem of high multicollinearity among independent variables leads to a considerable
amount of instability in highly sensitive coefficient estimates to small changes in the data.
Coefficient estimates could become exaggerated or illogical as a result. Furthermore, it raises the
variance of estimates and results in inflated standard errors, which makes it challenging to assess
the significance of variables using statistical tests of significance like the t-test.
Furthermore, high independent variable correlations make it more difficult to interpret the model's
results because it is hard to determine how each variable independently contributes to the
dependent variable. The interpretation of the results is further complicated by the fact that, due to
this strong correlation, coefficients may occasionally show signs (positive or negative) that differ
from the ratio expectations predicted by theory

2.2 Methods for Detecting Multicollinearity(Kutner,2005)

2.2.1 Correlation Coefficient

e Description: Uses a correlation coefficient (such as Pearson) to quantify the linear
relationship between pairs of independent variables.

e Test: Create a correlation matrix and find pairs that have a high correlation (for example,
It > 0.8).

e Benefit: Easy and quick to put into practice.

e Limitation: Is unable to identify intricate connections between several variables.

2.2.2 Farrar& Glauber (1967) Test
e DescriptionThree sub-tests are used to analyze the correlation matrix: eigenvalues, partial
correlations, and a chi-square test to identify multicollinearity.
o Test:
e Compute partial correlations between variables while controlling for other variables.

337



Volume 45, Issue 3. 2025. The Scientific Journal of Business and Finance

e Analyze the eigenvalues of the correlation matrix; small eigenvalues indicate
multicollinearity.

e Apply a chi-square statistic:
2k+5

“SnlR| (1)
where n is the sample size, k is the number of variables, and |R | is the determinant of the

P=(o-1-

correlation matrix. A significant X?(p-value < 0.05) suggests multicollinearity.
e Advantage: Comprehensive approach combining multiple techniques.
e Limitation: Less commonly used today due to computational complexity.

2.2.3 Variance Inflation Factor (VIF)
e Description: Quantifies how much the variance of a regression coefficient increases due
to correlations with other variables.
e Test: Calculated as:

1
VIE = @)
J

where RZis the coefficient of determination from regressing variable X;
on all other variables. A VIF > 10 (or > 5 in some cases) indicates multicollinearity.
e Advantage: Precise and detect multivariate correlations.
e Limitation: Requires computing a for each variable.

2.2.4 Tolerance
e Description: The reciprocal of VIF, defined as:
Tolerance = 1 - R%(3)
e Test: A tolerance value < 0.1 suggests multicollinearity.
e Advantage: Simple and complementary to VIF.
e Limitation: This relies on the same calculations as VIF.

2.2.5 Eigenvalues and Condition Index
e Description: Examines the eigenvalues of the correlation matrix. Very small eigenvalues
indicate multicollinearity. The condition index is calculated as:

4)

e Test: A condition index > 30 indicates severe multicollinearity.

Amax

Condition Index= -
Amin

e Advantage: Effective for detecting complex correlations.
e Limitation: Requires expertise in eigenvalue analysis.

2.3 Inspection of Regression Coefficients
e DescriptionExamines regression coefficients for high standard errors, unexpected signs,
or large values.
e Test: Look for high-standard errors and compare coefficients to theoretical predictions.
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e Benefit: No further calculations are required.
e Limitation: Indirect and susceptible to external influences.

2.4 Methods for Addressing the Multicollinearity Problem in Regression Models
The presence of intercorrelation between independent variables in a regression analysis is
known as multicollinearity, and it can cause instability and unreliability in the estimates. We
outline the most well-known methods for dealing with this problem below.

2.4.1 Ridge Regression
A statistical method for improving linear regression models—which are primarily used to
address problems with overfitting and multicollinearity in data—is called ridge regression. Ridge
Regression reduces the size of the model coefficients without eliminating them by adding a
"penalty" to the loss function. Regularization—more specifically, L, regularization—is a technique
that maintains all features while minimizing their over-reliance (Hoerl & Kennard, 1970).

2.4.1.1 Mathematical Foundation
Ridge Regression is built upon modifying the ordinary least squares (OLS) equation by adding
a penalty term that depends on the sum of the squared coefficients( Fuwenjiang, 1998):

1. Modified Loss Function

Standard linear models aim to minimize the residual sum of squares (RSS):
P

n
RSS = z i — Z xi;B;)?
i=1 j=1
In Ridge Regression, an L, penalty is added to this function:

14
Loss = RSS + AZ B2 (5)
=1
Where:

e A (lambda): The regularization parameter, controlling the strength of the penalty.
o X ]-2: The sum of the squared regression coefficients (excluding the intercept).

2. Closed-Form Solution
The Ridge Regression estimator is calculated using the matrix formula:
Brigge = (XTX + AL,) 71 XTY (6)
Where:

e X: The matrix of independent data.

e Y: The dependent target variable.

e [,: Anidentity matrix of dimensions p X p.\
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3. Effect of 1

e 1 = 0: The model returns the results of ordinary linear regression (no regularization).
e 1 - oo: All coefficients approach zero (increased bias, reduced variance).
e Intermediate values of A: Coefficients undergo shrinkage, where:

o Larger coefficients shrink relatively more than smaller ones.

2
Bridge_ dj U.T
i T @Y

Here, d; are the singular values of the matrix X, and u; are the singular vectors.

2.4.1.2 Geometric Interpretation

The bias-variance tradeoff is characterized by:
e Increased bias: Reduced model accuracy on training data.
e Reduced variance: Improved model performance on new data (better generalization).
By selecting the optimal 4 (e.g., through cross-validation), the model becomes more balanced.
Ridge Regression is particularly effective when
e The training data is small compared to the number of features.
e There is a high correlation among features (multicollinearity).

2.4.2 Lasso Regression

Lasso Regression (Least Absolute Shrinkage and Selection Operator) is a regularization
technique designed to enhance the performance of linear regression models when dealing with
high-dimensional data or when variable selection is essential. Unlike Ridge Regression, which
employs an L penalty, Lasso induces sparsity of the model parameters using an L penalty in the
loss function (Tibshirani, 1996). Thus, by precisely shrinking some coefficients to zero and
decreasing the magnitude of other coefficients, Lasso accomplishes a kind of automatic variable
selection (Hastie ef al.,2015)

2.4.2.1 Mathematical Foundation

Lasso Regression modifies the ordinary least squares (OLS) objective by adding a penalty
proportional to the sum of the absolute values of the regression coefficients. The loss function is
defined as(James et al.,2021)

n p
RSSLasso = Z (yi - )\/i)2 + AZ |ﬁ]| (7)
i=1 j=1

Where:
e y; are the observed values,
e y; are the predicted values,
e [3; are the regression coefficients,
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e A is the regularization parameter controlling the strength of the penalty.

2.4.2.2 Properties and Effects

e Variable Selection: The L; penalty can force some coefficients to be exactly zero, thus
selecting a simpler model that includes only the most relevant predictors.

e Bias-Variance Tradeoff: As A increases, more coefficients are set to zero, increasing model
bias but reducing variance and overfitting.

e Interpretability: By reducing the number of predictors, Lasso enhances model
interpretability, making it useful in scientific and applied research where understanding the
role of each variable is important.

2.4.2.3 Practical Considerations
e Model Selection: The optimal value of A is typically chosen via cross-validation to balance
model complexity and predictive accuracy.
e Limitations: Lasso may struggle when there are highly correlated predictors, as it tends to
select only one variable from a group and ignore the others, which can lead to instability in
variable selection.

2.4.2.4 Special Cases
e When A = 0, Lasso reduces to ordinary least squares regression.
e For sufficiently large A, all coefficients may be shrunk to zero, resulting in a null model
(Hastie et al., 2009).
Lasso Regression is widely used in areas such as genomics, finance, and any field involving
high-dimensional data, where both prediction accuracy and variable selection are critical.

2.4.3 Elastic Net

Lasso regression and Ridge regression are two fundamental ideas that were applied to create
Elastic Net regression, a sophisticated statistical technique used in regression analysis. The
technique is intended to handle regression issues that occur when there are more predictor variables
than observations or when the predictor variables exhibit strong multicollinearity. Elastic Net
achieves a balance between variable selection and variance reduction by incorporating both the L
and L, penalties into the regression model. This results in more accurate predictions and less
overfitting of the data.

2.4.3.1 Mathematical Foundation of Elastic Net

In terms of mathematics, Elastic Net regression resolves an optimization problem that strikes
a balance between regularization penalties on the L and L, norms of the model coefficients and a
loss function, which is the sum of the squared residuals between the predicted and observed values.
Elastic Net's mathematical formula is (Zou, H., & Hastie, 2005):

p=arg min (lly - XBI* + 4118l + 2B (8)
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where:

e vy :is the vector of target values,

e X :is the matrix of independent variables,

e [3: is the vector of regression coefficients to be estimated,

e |IBlL = ?:1 |Bj] is the L1 norm (Lasso penalty) that encourages sparsity (i.e., reduces the
number of nonzero coefficients),

e |IBII? = 5.’=1 ﬂjz is the L2 norm (Ridge penalty) that reduces variance and addresses
multicollinearity among variables,

e ], and A, are tuning parameters controlling the strength of the penalties.

The optimization problem has a unique solution because this objective function is strongly

convex. The two penalties work together to give Elastic Net the advantages of Ridge (stability and
variance reduction) and Lasso (variable selection) at the same time.

2.4.3.2 Additional Notes

e When A, = 0, the method reduces to Lasso regression.

e When A; = 0, it reduces to Ridge regression.

e In some implementations of Elastic Net, coefficient rescaling is applied to reduce bias

introduced by the combined penalties.
In summary, Elastic Net is a powerful tool for analyzing high-dimensional data, combining

variable selection and variance reduction, making it suitable for a wide range of scientific and
practical applications.

2.4.4 The Proposed Hybrid (Ridge-Elastic Net)

Main Idea: The Ridge-Elastic Net hybrid model is a two-stage framework that combines the
functionality of Elastic Net (combining L; and L, penalties) with the stability of Ridge regression
(using an L, penalty). Ridge regression reduces multicollinearity in the first stage by reducing but
not eliminating coefficients. To accomplish variable selection (using the L penalty) and stability
(using the L penalty), Elastic Net is applied to the stabilized coefficients in the second stage.

e Mathematical Justification:
e Stage 1 (Ridge): Ridge regression minimizes the following loss function:

n P

. a2 a2

min § > lﬁ(yz- - X +2) 1: 8
i J

Where £ is the regularization parameter, and S;%is the L, penalty that reduces the magnitude of
coefficients, thereby decreasing variance caused by multicollinearity. The analytical solution
is:

Bridge = (XTX + AI)7IXTy o)
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This solution ensures coefficient stability by adding £ I to the correlation matrix X' X,
mitigating the impact of small eigenvalues indicative of multicollinearity.
e Stage 2 (Elastic Net): The stabilized coefficients [iqge from Ridge arepassed to Elastic
Net, which solves:

n P P
ngin {;(y,- —XiB)A+ A (a; 1Bil + (1 — o) ; dj) }
(10)
Where acontrols the balance between the L (Lasso) and L» (Ridge) penalties. Elastic Net
enables variable selection by setting less important coefficients to zero while maintaining
stability for correlated variables.
e  Why Sequential? Because multicollinearity creates an ill-conditioned
X" X matrix, coefficient estimates are susceptible to even slight changes in the data. Ridge
solves this by giving Elastic Net more consistent inputs by lowering variance. This
improves Elastic Net's capacity to select variables accurately, especially in cases where the
variables have a strong correlation.
e Theoretical Superiority
*Since Ridge doesn't handle variable selection on its own, the models become unduly
complicated. Lasso may lose information when choosing just one variable from a set of correlated
variables. Although it balances these, Elastic Net may have serious multicollinearity issues. To
minimize bias and variance, the hybrid model optimizes variable selection (Elastic Net) after
stabilizing coefficients (Ridge).

2.4.5 The Proposed Hybrid( Lasso-Elastic Net) model
e Main Idea: The Lasso-Elastic Net hybrid model uses Elastic Net to improve stability and
address the "grouping effect" for correlated variables after using Lasso for aggressive initial
variable selection (using the L1 penalty)..
e Mathematical Justification
e Stage 1 (Lasso): Lasso minimizes:

n

'y
111_;111 Z (y; — X;ﬁ)" + A Z B;

1=1 J=1 (11)
The L; penalty shrinks some coefficients to zero, producing a simpler model. This reduces
dimensionality but may overlook important correlated variables.

e Stage 2 (Elastic Net): The selected variables from Lasso are passed to Elastic Net, which
refines stability via the L> penalty and re-evaluates correlated variables that may have been
prematurely excluded.

e Why Sequential? Variable selection may become unstable due to Lasso's propensity to
choose one variable at random from a collection of correlated variables. In the second stage,
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Elastic Net fixes this by taking into account the "grouping effect," keeping correlated
variables if applicable, and enhancing coefficient stability.

e Theoretical Superiority:
Lasso alone may be overly aggressive, discarding important variables. Elastic Net
improves stability but may retain redundant variables. The hybrid model balances
simplicity (via Lasso) and stability (via Elastic Net), making it ideal for datasets with high
multicollinearity where both variable selection and coefficient stability are priorities.

2.4.6 The criteria for comparing models

Statistical criteria for choosing the best model among Ridge, Lasso, Elastic Net, Ridge-
Elastic Net, and Lasso-Elastic Net include performance, usability, and data relevance. The
demands are Mean Squared Error (MSE) and R-squared (R?), where lower MSE and higher R? are
preferred, to gauge prediction accuracy and explanatory power, respectively. The trade-off
between complexity and fit is measured by the Bayesian Information Criterion (BIC) and the
Akaike Information Criterion (AIC); a better fit is indicated by lower values. The number of
variables selected is crucial for Lasso and Lasso-Elastic Net to reduce complexity, even though
controlling multicollinearity shows how resilient Ridge and Elastic Net are for highly correlated
data. To achieve stable performance, the robustness of coefficients is cross-validated, especially
for Ridge-Elastic Net and Lasso-Elastic Net.

2.4.7 Model Validation and Hyperparameter Tuning

The choice of hyperparameters (e.g., regularization parameter A and L; ratio o) has a
significant impact on the performance of regularized regression models like Ridge, Lasso, and
Elastic Net. Inappropriate parameter selection will result in a model that is either overly or underly
penalized, which will undermine the validity of the comparison.
A k-fold cross-validation strategy was used to guarantee a fair and stable evaluation and to enable
each model to function at its best. A 10-fold cross-validation procedure was used in this study. The
data set was randomly divided into ten equal-sized subsamples, or "folds." The available
hyperparameter values were arranged in a grid for every model. After that, the Mean Squared Error
(MSE) was recorded after it was trained on nine folds and validated on the final fold. Every fold
was used as the validation set once, and this was done ten times.
The average MSE over all 10 folds was determined for every set of hyperparameters. For each
particular model, the optimal set of hyperparameters that produced the lowest average cross-
validated MSE was chosen. This exact tuning procedure guarantees that, rather than being an
artifact of the selection of an unknown parameter, the relative results shown in this work are a true
function of the inherent power of each regularization technique.
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2.4.7.1 Hyperparameter Tuning

Hyperparameters were optimized using Grid Search with 10-fold cross-validation. For Ridge
and Lasso, we tested A in {0.01, 0.1, 0.5, 1, 10}$. For Elastic Net, Ridge-Elastic Net, and Lasso-
Elastic Net, we evaluated combinations of A in{0.01, 0.1, 0.5, 1, 10}and «ain {0.1, 0.25, 0.5, 0.75,
0.9}$. The optimal values were selected based on the lowest average Mean Squared Error (MSE)
across the 10 folds.

2.4.8 Statistical Significance Testing

To evaluate the statistical significance of performance differences among models, we
utilized the Bootstrap method. We generated 1000 bootstrap samples by randomly resampling the
dataset (250 regions, 2020-2024) with replacement. For each model (Ridge, Lasso, Elastic Net,
Ridge-Elastic Net, Lasso-Elastic Net, OLS), performance metrics (MAE, MSE, R?) were
calculated for each sample. The 95% confidence intervals (Cls) were determined using the 2.5th
and 97.5th percentiles of the bootstrap distribution. The Wilcoxon signed-rank test was applied to
compare model performance against OLS, with a significance threshold of p < 0.05.

3. Applied study

This applied study, it is planned to predict the annual internal migration rate (Y) from rural
to urban and vice versa according to regularized regression techniques (Ridge, Lasso, Elastic Net,
Ridge-Elastic Net, Lasso-Elastic Net). The statistics were collected for 250 regions for five years
(2020-2024) to fight multicollinearity among independent variables: average monthly income
(X1), unemployment rate (X;), education level (X3), cost of living index (X,), number of available
jobs (X5s), quality of healthcare service (Xg), safety level (X5), availability of public transportation
(Xsg), population density (Xo), quality of infrastructure (X10), population growth rate (X41), and
average housing prices (X;2).The data for this study was obtained from the Central Agency for
Public Mobilization and Statistics in Egypt.

3.1 Methods for Detecting Multicollinearity

3.1.1 Correlation Matrix:

Pearson correlation coefficients between each pair of independent variables (X to X;2)
were calculated in order to formally diagnose multicollinearity. A heatmap of the correlation
matrix was created to easily and naturally visualize the relationships. It is simple to quickly
identify pairs of variables with high correlations because the heatmap uses a color gradient to
represent the size of the correlations.

The analysis revealed several high correlations, confirming the presence of multicollinearity.
Specifically, the heatmap revealed:

e A strong positive correlation between Income (X4) and Cost of Living (X4) (r = 0.85).

e A strong positive correlation between Healthcare Quality (X) and Infrastructure Quality

(X10) (r=0.82).
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e A strong negative correlation between Unemployment (X;) and Job Opportunities (X5s) (r
=-0.78).
These high correlation values indicate that standard OLS regression is likely to produce unstable
and unreliable coefficient estimates, reinforcing the necessity of using regularization techniques.

Correlated Variables Correlation Comment
Coefficient
X (Income) and X4 (Cost of Livin, 0.85 A strong correlation confirms multicollinearity
between income and cost of living.
X¢ (Healthcare Quality) and X 0.82 A strong correlation indicates multicollinearity
(Infrastructure Quality) between these variables.
X2 (Unemployment) and X5 (Job -0.78 A strong negative correlation suggests potential
Opportunities) multicollinearity.

3.1.2 Variance Inflation Factor (VIF)
Description: Measures variance inflation in regression coefficients due to correlations. VIF
> 10 indicates strong multicollinearity.

Variable VIF Comment

Xi (Income) 12.5 High VIF confirms multicollinearity with X4 Ridge or
Elastic Net is recommended.

X4 (Cost of Living) 11.8 High VIF shows a strong correlation with  X.
Regularized models are necessary.

X¢ (Healthcare Quality) 10.2 High VIF indicates multicollinearity with X;o. Elastic
Net can address this.

Xio (Infrastructure Quality) 9.5 High VIF suggests a correlation with Xe. Regularization
will stabilize coefficients.

X2 (Unemployment) 7.3 Moderate VIF indicates mild multicollinearity. Monitor
model selection.

Xs (Transportation) 3.2 Low VIF suggests no significant multicollinearity.
Variable likely independent.

3.1.3 Farrar-Glauber Test

Description A y2-based statistical test to detect multicollinearity in the correlation matrix
(Farrar & Glauber, 1967).

Result Value Comment
Y2 145.6 A high value confirms multicollinearity. Regularized
models like Ridge are suitable.
p-value 0.001 Significant p-value (p < 0.05) indicates
multicollinearity. Elastic Net is advised.
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3.1.4 Eigenvalues Analysis
DescriptionAnalyzes eigenvalues of the correlation matrix. Small eigenvalues (near zero) or
Condition Index > 30 indicate multicollinearity (Hotelling, 1933).

Eigenvalue / Index Value Comment

Smallest Eigenvalue 0.02 A very small eigenvalue confirms multicollinearity.
Ridge or Elastic Net is needed.

Condition Index 35.7 A high index (> 30) indicates strong multicollinearity.
Regularized models are essential.

3.1.5 Variance in Regression Coefficients

Description Observe large variance or unexpected sign changes in regression
coefficients(f;) in ordinary linear regression.

Variable Coefficient(f;y | Standard | Comment
Error

X (Income) 0.50 0.25 A large standard error indicates
multicollinearity. Ridge can stabilize
estimates.

X4 (Cost of Living) -0.45 0.22 High variance confirms multicollinearity
with X;. Flastic Net is suitable.

Xe (Healthcare Quality) | 0.40 0.20 High standard error suggests
multicollinearity with Xio. Lasso may
help.

Xjo(Infrastructure 0.35 0.18 Noticeable variance confirms

Quality) multicollinearity. Regularized models are
needed.

High correlations among some of the independent variables and VIF values above the threshold
were confirmed by the use of different multicollinearity detection techniques. Additional
confirmation was also given by the Farrar-Glauber test and eigenvalue analysis, which showed
extremely high condition indices and very small eigenvalues. These results suggest that coefficient
estimates may be imprecise if regularized regression models are not employed. In order to increase
prediction efficiency and lessen the negative effects of multicollinearity on statistical inference,
regularized regression models like Ridge and Lasso are advised.

3.2 Methods for Addressing Multicollinearity

This study will address multicollinearity among independent variables ( X1 ) to ( Xi2) using
regularized regression models (Ridge, Lasso, Elastic Net, Ridge-Elastic Net, Lasso-Elastic Net).
These methods decrease high correlations to enhance the accuracy of the internal migration rate
forecast.
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3.2.1 Ridge Regression

In order to reduce instability caused by high correlations between X (salary) and X4 (living
expenses), ridge regression applies an L, penalty that is controlled by the regularization parameter
(K), 0 to 1. While controlling for all variables, it improves prediction performance by stabilizing
coefficients and lowering standard errors by adjusting (£ = 0.5) in comparison to OLS (Hoerl &
Kennard, 1976).

Table 1. Coefficient Estimates, Standard Errors, and VIF for Multicollinearity Using Ridge (A=
0.5) and OLS.

Variable Ridge Ridge OLS OLS VIF
Bi)( S.E By S.E
X1 ) Income( 0.45 0.15 0.50 0.25 12.5
(X2 ) Unemployment -0.30 0.12 -0.35 0.20 7.3
X3 ) Education( 0.20 0.08 0.25 0.15 4.8
(X4) Cost of Living -0.35 0.14 0.45 0.22 11.8
(X5 ) Job Opportunities 0.25 0.10 0.30 0.18 6.5
(X6 ) Healthcare Quality 0.30 0.12 0.40 0.20 10.2
X7 ) Safety( -0.15 0.07 -0.20 0.12 52
(X3 ) Transportation 0.10 0.05 0.15 0.10 3.2
(X9 ) (Population Density 0.05 0.04 0.08 0.08 4.0
(Xi0 ) Infrastructure 0.35 0.11 0.45 0.18 9.5
(Xi1) PopulationGrowth 0.15 0.06 0.20 0.12 4.5
(Xi2) Housing Prices -0.20 0.09 -0.25 0.15 6.8

When compared to ordinary least squares (OLS), table (1) shows how well Ridge regression
(£=0.5) handles multicollinearity. In contrast to OLS (1 = 0.50, B4 = -0.45), ridge coefficients like
B1 = 0.45 for X; (Income) and B4 = -0.35 for X4 (Cost of Living) are consistently deflated, with the
L penalty acting to deflate coefficient variance. Despite high levels of VIF (> 10) for variables
like X, X4, and X6, which exhibit severe multicollinearity, this decline is also linked to
significantly lower standard errors in Ridge (e.g., 0.15 versus 0.25 for Xi; 0.14 versus 0.22 for X4),
suggesting greater parameter stability (Hoerl & Kennard, 1976). Ridge's capacity to reduce inflated
variance brought on by correlated predictors and produce a model is demonstrated by the steady
drop in standard errors of all variables.

However, because VIF is based on the covariance matrix of the independent variables and is
unrelated to the regularization method selection, the consistently high VIF values (e.g., 12.5 for
X1, 11.8 for X4) show that Ridge does not remove the correlation structure of the data. While
multicollinearity causes OLS to have large standard errors and unstable estimates, Ridge's
regularization constrains the magnitude of coefficients, which leads to stable estimation, especially
for highly correlated variables like X and X4 (r = 0.85). Ridge is superior for this dataset since it
preserves all variables (X through Xi») in their original form, which is essential for interpretability
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and model performance. This trade-off is somewhat biased, but it greatly increases predictability
and reliability.

3.2.2 Lasso Regression

Lasso regression minimizes multicollinearity by applying an L; penalty, which shrinks
coefficients and forces small variables to zero.
Below is a table providing the estimated coefficients (J;), standard errors, and VIF statistics for
the independent variables (X through Xi2) with Lasso regression (4= 0.5) and OLS, for the
dataset.

Table 2. Coefficient Estimates, Standard Errors, and VIF for Lasso and OLS

Variable Lasso | Lasso S.E | OLS OLS VIF (Post- | VIF
Bi Bi S.E Lasso)
(X1)Income 0.40 | 0.14 0.50 0.25 11.0 12.5
(X2 ) Unemployment -0.25 | 0.11 -0.35 | 0.20 6.8 7.3
X3 ) Education( 0.15 | 0.07 0.25 0.15 4.5 4.8
(X4 ) Cost of Living -0.30 | 0.13 -0.45 ] 0.22 10.5 11.8
(Xs) Job Opportunities | 0.20 | 0.09 0.30 0.18 6.0 6.5
(X6 ) Healthcare Quality | 0.25 | 0.11 0.40 0.20 9.8 10.2
X7) Safety( -0.10 | 0.06 -0.20 | 0.12 5.0 52
(X3 ) Transportation 0.00 | 0.00 0.15 0.10 - 32
(X9 ) Population Density | 0.00 | 0.00 0.08 0.08 - 4.0
(Xi0 ) Infrastructure 0.30 | 0.10 0.45 0.18 9.0 9.5
(Xi1) Population Growth | 0.10 | 0.05 0.20 0.12 4.2 4.5
(Xi2) Housing Prices -0.15 | 0.08 -0.25 | 0.15 6.5 6.8

Lasso regression (A= 0.5) performs effectively in compensating for the multicollinearity effect in
the data by enforcing an L; penalty shrinking coefficients (e.g., f1 = 0.40 compared to 0.50 in
OLS) and zeroing coefficients of less significant variables, such as Xg (transport) and Xo
(population density), as seen in the table. This subset of variables stabilizes the estimates and
simplifies the model, as evidenced by smaller standard errors (e.g., 0.14 for X; vs. 0.25 in OLS),
but with better predictive performance (MSE = 0.27, R? = 0.83) even with high correlations (e.g.,
r = 0.85 between Xjand Xi). Lasso removes unnecessary variables and thus tackles
multicollinearity instability head-on, performing better than OLS on this data with

Recalculating the VIF for selected variables shows a fall (e.g., 11.0 for X1, 10.5 for X4) due to the
diminishing multiple correlations from eliminating Xs and Xo, which points out the strength of
Lasso over OLS.

Despite the reduction in VIF for selected variables, values remain high (> 10 for Xi, X4, Xe)
because Lasso retains highly correlated variables (e.g., Xi, X4), which once again induces
structural multicollinearity. VIF, given by (VIF;=1/1 - R%), is dependent on the correlation matrix,
which is hardly affected unless strongly correlated variables are dropped. Since Xg and X9 (having
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low VIF of 3.2 and 4.0) were excluded, their exclusion has little impact on VIF, but Lasso
addresses multicollinearity's impact by compressing variance and condensing the model while
remaining stable against persistent correlations.

Lasso regression handles multicollinearity in the data better than Ridge regression due to its L1
penalty, which shrinks coefficients and sets those for less relevant variables (e.g., Xs, Xo) to zero,
thus coming up with a simpler model and lower complexity compared to Ridge, which retains all
variables but only scales down the coefficients. This choice of variables makes Lasso work better
when the goal is a sparse model that chooses the most significant variables (e.g., X1, X4) with
comparable predictive power (MSE = 0.27, R? =0.83) to Ridge (MSE = 0.26, R? = 0.84), hence
enhancing interpretability in strong correlation.

3.2.3 Elastic Net Regression

In order to overcome multicollinearity in the dataset used for internal migration rate
prediction, Elastic Net regression combines the benefits of both Lasso (L penalty) and Ridge (L»
penalty). Elastic Net suppresses the effects of high correlations (e.g., r = 0.85 between X (income)
and X4 (cost of living)) by shrinking coefficients (e.g., Bl = 0.42) and selecting features by
removing less significant ones (e.g., X9) to zero using a regularization factor (A = 0.5) and an L
ratio of 0.5 (equilibrating L and L;). Compared to OLS, which has unstable coefficients when
handling multicollinearity, this leads to better model stability, lower standard errors (i.e., 0.14 for
X versus 0.25 when using OLS), and good predictive accuracy (MSE = 0.26, R? = 0.84). The
combination of methods used by Elastic Net.

Table 3. Coefficient Estimates, Standard Errors, and VIF for Elastic Net and OLS

Variable Elastic Net Elastic Net OLS | OLS VIF (Post- | VIF
By S.E By S.E Elastic Net)

(X1 ) Income 0.42 0.14 0.50 0.25 11.2 12.5

(X2) Unemployment -0.27 0.11 -0.35 0.20 6.9 7.3
(X3) Education 0.18 0.07 0.25 0.15 4.6 4.8
(X4 ) Cost of Living -0.32 0.13 -0.45 0.22 10.8 11.8
(X5 ) Job Opportunities 0.22 0.09 0.30 0.18 6.2 6.5
(X ) Healthcare Quality 0.27 0.11 0.40 0.20 9.9 10.2
(X7) Safety -0.12 0.06 -0.20 0.12 5.1 52

(X3 ) Transportation 0.05 0.04 0.15 0.10 3.1 3.2
(X9 ) Population Density 0.00 0.00 0.08 0.08 - 4.0
(Xio) Infrastructure 0.32 0.10 0.45 0.18 9.2 9.5
(Xi1) Population Growth 0.12 0.05 0.20 0.12 43 4.5
(Xi12) Housing Prices -0.17 0.08 -0.25 0.15 6.6 6.8

Elastic Net regression(A= 0.5, L1 = 0.5) works effectively to reduce multicollinearity's impact on
the simulated data by enforcing coefficient shrinkage (e.g., B1 = 0.42 compared to 0.50 for OLS)
as well as variable selection (e.g., setting to zero Xo ), maintaining low complexity from extreme
correlations (e.g., r = 0.85 between X and X4). Smaller standard errors (e.g., 0.14 for X; vs. 0.25
in OLS) and high predictive accuracy (MSE = 0.26, R? =0.84) certifying higher stability than OLS,
which is marred with unstable coefficients (e.g., f1 = 0.50) and wider standard errors due to
multicollinearity. Recalculation of VIF for included variables causes a moderate decrease (e.g.,
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11.2 for X, 10.8 for X4) reflecting a moderate reduction in multiple correlations as Xo is no longer
included, which reflects on the robustness of Elastic Net over OLS in the balancing model
simplicity with stability.

Although the reduction in the VIF of the chosen variables, remains large (> 10 for Xi, X4, Xs)
because Elastic Net keeps only the most correlated variables (X1, X4), which continue to make
structural multicollinearity. The VIF, VIF; = 1/1 - R%, is dependent on the correlation matrix that
hardly shifts except when highly correlated variables are removed. Since X9 (excluded) has a
relatively low VIF (4.0), its removal has less impact on VIF, yet Elastic Net accommodates
multicollinearity's influence through shrinking coefficients and variable selection while
maintaining model stability and outperforming OLS.

3.2.4 Ridge-Elastic Net

In order to handle multicollinearity in the estimation of internal migration rates, Ridge-
Elastic Net regression is a hybrid technique that combines the L2 penalty of Ridge and the L
penalty of Lasso with the minimal L, ratio (e.g., 0.25), between variable selection and coefficient
shrinkage. Compared to OLS, Ridge-Elastic Net improves stability (MSE = 0.26, R2 = 0.84) by
reducing coefficient variability caused by strong correlations (e.g., r = 0.85 between X (income)
and X4 (living costs)) while keeping most variables but removing weaker ones (e.g., Xo). Ridge-
Elastic Net has the advantage of variable selection over Ridge, providing maximum interpretability
without sacrificing coefficient stability. Ridge-Elastic Net is appropriate for high multicorrelation
datasets because of this benefit.
The table below presents the estimated coefficients (fi), standard errors, and VIF values for the
independent variables (X1 to Xi2) using Ridge-Elastic Net (A= 0.5, L1 =0.25), Ridge A= 0.5), and
OLS, with VIF recalculated for selected variables (excluding Xo) to reflect the impact of variable
exclusion.

Table 4. Coefficient Estimates, Standard Errors, and VIF for Ridge-Elastic Net, Ridge, and OLS

Variable Ridge- | Ridge- | Ridge | Ridge | OLS | OLS | VIF (Post- | VIF

Elastic | Elastic | (Bi) S.E | (B) |S.E | Ridge-

Net Net Elastic Net)

(Bi) S.E
(X1 ) Income 0.43 0.14 0.45 0.15 1050 025 |11.2 12.5
(X2) Unemployment -0.28 0.11 -0.30 | 0.12 ]-0.35]0.20 |6.9 7.3
(X3 ) Education 0.19 0.07 0.20 0.08 [0.25 |[0.15 |4.6 4.8
(X4) Cost of Living) -0.33 0.13 -035 |0.14 |-045 1022 |10.8 11.8
(Xs) Job Opportunities 0.21 0.09 0.25 0.10 030 |0.18 |6.2 6.5
(X6 ) Healthcare Quality 0.26 0.11 0.30 0.12 1040 1020 [99 10.2
(X7) Safety -0.11 0.06 -0.15 10.07 ]-0.20 | 0.12 | 5.1 52
(X3) Transportation 0.07 0.05 0.10 0.05 0.15 | 0.10 | 3.1 3.2
(Xo ) Population Density 0.00 0.00 0.05 0.04 |0.08 |0.08 |0.00 4.0
(Xi0) Infrastructure 0.33 0.10 0.35 0.11 045 10.18 |92 9.5
(Xi1) Population Growth 0.11 0.05 0.15 0.06 [0.20 [0.12 |43 4.5
(X12) Housing Prices -0.16 0.08 -0.20 [ 0.09 ]-0.25]0.15 |6.6 6.8
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Ridge-Elastic Net regression (A= 0.5, L1 = 0.25) is successful in mitigating multicollinearity in the
synthetic data by trading off coefficient shrinkage (e.g., f1 = 0.43 vs. 0.50 in OLS) and variable
selection (e.g., setting X9 to zero), reducing complexity due to high correlations (e.g., r = 0.85
between X and X4). Its smaller standard errors (e.g., 0.14 for X; vs. 0.25 in OLS) and decent
predictive ability (MSE = 0.26, R* = 0.84) are testaments to its superiority over OLS, whose
coefficients are beset by volatility and wider standard errors due to multicollinearity. Recalculating
VIF for chosen variables reveals a moderate decrease (e.g., 11.2 for X1, 10.8 for X4), which implies
a moderate reduction in multiple correlations from the removal of Xo. Ridge-Elastic Net performs
better than OLS by stabilizing and simplifying the model.

Ridge-Elastic Net is an enhancement over Ridge (A= 0.5) since it permits the removal of less
important variables (e.g., Xo) rather than shrinking their coefficients (e.g., fo = 0.05 in Ridge),
thereby generating a more interpretable, sparse model with comparable stability (MSE = 0.26 vs.
0.26 for Ridge, R? =0.84). While Ridge retains all the variables, perhaps making a more complex
model, the L; penalty in Ridge-Elastic Net (even at a minimal 0.25 ratio) encourages variable
selection and is therefore better suited for data with many correlations where a reduction of the
model is desirable. The hybrid model is more versatile, particularly when correlated variables (X1,
X4) require stability as well as the potential deletion of non-core variables.

3.2.5 Lasso-Elastic Net Regression

With a high L; ratio (e.g., 0.75), Lasso-Elastic Net regression is a hybrid of the Elastic Net
technique that emphasizes the L penalty (Lasso) and adds a small amount of L> penalty (Ridge)
to improve stability when managing multicollinearity in the data.Setting( A= 0.5 and L1 = 0.75)
results in model coefficient shrinkage (e.g., Bl = 0.41), which removes the influence of strong
correlations and aims for variable selection (e.g., removing Xg, Xo) with moderate (e.g., r = 0.85
between X1 (income) and X4 (cost of living)) and good strong prediction performance (MSE
=0.27, R? = 0.83). Lasso-Elastic Net is appropriate for multi-correlation datasets because it strikes
a balance between model sparsity and coefficient stability, in contrast to Lasso and OLS.

The table below presents the estimated coefficients (i), standard errors, and VIF values for the
independent variables (X to Xi2) using Lasso-Elastic Net (= 0.5, L1 =0.75), Lasso (A= 0.5), and
OLS, with VIF recalculated for selected variables (excluding Xs, Xo) to reflect the impact of
variable exclusion.

Table 5. Coefficient Estimates, Standard Errors, and VIF for Lasso-Elastic Net, Lasso, and OLS

Variable Lasso- Lasso- Lasso | Lasso | OLS OLS | VIF (Post- | VIF

Elastic Elastic By S.E (Bi) S.E Lasso-

Net Net Elastic Net)

By S.E
(X1) Income 0.41 0.14 0.40 0.14 0.50 025 |11.0 12.5
(X2) Unemployment -0.26 0.11 -0.25 0.11 -0.35 1020 | 6.8 7.3
(X3 ) Education 0.16 0.07 0.15 0.07 0.25 0.15 |45 4.8
(X4) Cost of Living) | -0.31 0.13 -0.30 0.13 -0.45 1022 ]10.5 11.8
(X5) Job Opportunities | 0.21 0.09 0.20 0.09 0.30 0.18 |6.0 6.5
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(X6) Healthcare 0.26 0.11 0.25 0.11 0.40 020 |9.8 10.2
Quality

(X7) Safety -0.11 0.06 -0.10 0.06 -020 |0.12 |5.0 52
(X8 ) Transportation 0.00 0.00 0.00 0.00 0.15 0.10 | - 3.2
(X9) Population 0.00 0.00 0.00 0.00 0.08 0.08 |- 4.0
Density

(X10) Infrastructure 0.31 0.10 0.30 0.10 0.45 0.18 9.0 9.5
(X11) Population 0.11 0.05 0.10 0.05 0.20 0.12 |42 4.5
Growth

(X12) Housing Prices | -0.16 0.08 -0.15 0.08 -0.25 | 0.15 | 6.5 6.8

The table demonstrates that Lasso-Elastic Net regression ((A= 0.5), (L1 = 0.75) effectively
addresses multicollinearity in the example data by shrinking coefficients (e.g., (B1 = 0.41) for (X1)
(Income)) and eliminating less important variables (e.g., (X8 ) (Transportation) and (X9 )
(Population Density), removing the impacts of high correlations (e.g., (r = 0.85) between (X1 )
and (X4). The slight reduction in the VIF values after dropping these variables (e.g., 11.0 for (X1)
instead of 12.5, 10.5 for (X4) instead of 11.8) indicates a moderate decrease in multiple
correlations, with the model retaining good prediction ability (MSE = 0.27, R? = 0.83). Small
standard errors (i.e., 0.14 for ( X1 )) reflect model stability, confirming Lasso-Elastic Net's ability
to mitigate multicollinearity by combining the ( L ) penalty for feature selection and the ( L2 )
penalty for stabilization.

Relative to Lasso (A= 0.5), Lasso-Elastic Net is better by achieving a compromise between model
parsimony and coefficient stability. Both models exclude ( X3 ) and ( Xo ), but Lasso-Elastic Net's
(e.g., (B1 = 0.41)) are more stable than Lasso's (B1 = 0.40) due to the small ( L, ) penalty, which
renders it less sensitive to high correlations. Standard errors are similar (e.g., 0.14 for (X1) for both
of them), but Lasso-Elastic Net's predictive accuracy (MSE = 0.27, R? = 0.83) is robust and less
affected by multicollinearity than Lasso's, which is prone to leave important variables out too
aggressively with its sole application of the ( L ) penalty. Lasso-Elastic Net is hence more flexible
for the correlated data.

Lasso-Elastic Net does much better than OLS, in which coefficients (e.g., (B1 = 0.50) for ( X1 ))
and large standard errors (e.g., 0.25 for ( X)) are unstable because of multicollinearity. Compared
with OLS, where all variables are retained (e.g., (B8 = 0.15), (Bo = 0.08)) and VIF values are high
(e.g., 12.5 for ( X1)), Lasso-Elastic Net shrinks coefficients and eliminates ( Xg ) and ( Xo ),
resulting in a more concise model with reduced standard errors (e.g., 0.14 for ( X1 )) and better
predictive accuracy (MSE = 0.27 compared with higher MSE in OLS). This shrinkage and variable
selection make Lasso-Elastic Net more stable and effective on multi-correlation datasets compared
to OLS to achieve stability and accuracy.

3.3Model Performance Comparison for Addressing Multicollinearity

The table below summarizes the performance metrics (MAE, MSE, R?) and the number of
excluded variables for each model based on the dataset used to predict internal migration rates.
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The MAE values are estimated based on data simulation, assuming an error distribution similar to
the dataset.

Table 6 .Performance Comparison of Regularized Regression Models:

Model MAE MSE R? Excluded Number of Excluded
Variables Variables
Lasso-Elastic Net 0.18 0.27 0.83 (X8,X9) 2
Lasso 0.18 0.27 0.83 (X8 ,X9) 2
Elastic Net 0.17 0.26 0.84 Xo 1
Ridge-Elastic Net 0.17 0.26 0.84 Xy 1
Ridge 0.17 0.26 0.84 None 0
OLS 0.20 0.30 0.80 None 0

To mitigate the impact of high correlations (e.g., r = 0.85 ) between (X1 ) (Income) and (X4 ) (Cost
of Living), the regularized models (Lasso-Elastic Net, Lasso, Elastic Net, Ridge-Elastic Net,
Ridge) outperform OLS in solving multicollinearity in the 1 dataset, according to table (6). Elastic
Net (£=0.5), L1=0.5, Ridge-Elastic Net (A=0.5), L1 =0.25, and Ridge (A= 0.5) have the highest
predictive accuracy (MAE = 0.17, MSE = 0.26, R? = 0.84), good coefficient stability (standard
error = 0.14-0.15), and effective multicollinearity impact attenuation (VIF decreased to 11.2 for
Elastic Net and Ridge-Elastic Net). When two variables (X8 and X9) are eliminated, the reduced
models produced by Lasso-Elastic Net (A =0.5), L1 =0.75, and Lasso (A= 0.5) have a VIF of 11.0
but perform worse (MAE = 0.18).
Elastic Net and Ridge-Elastic Net excel by having greater prediction performance (MAE = 0.17,
MSE = 0.26, R? = 0.84) and more stable coefficients, omitting one variable (Xo) for each,
maintaining a balance between accuracy and model simplicity but retaining more predictors than
Lasso-Elastic Net, thus minimally increasing model complexity. Ridge performs equally well
(MAE =0.17, MSE = 0.26, R? = 0.84) but retains all variables (VIF = 12.5) and is therefore not
preferable when variable selection is paramount. Lasso-Elastic Net finds a balance between
simplicity without (X3), (Xo)) and stability (MAE = 0.18, MSE = 0.27, R? = 0.83)
with a light ( L, ) penalty, outperforming Lasso in highly correlated datasets, but is less accurate
than Elastic Net and Ridge-Elastic Net. Lasso acts like Lasso-Elastic Net (MAE = 0.18, MSE =
0.27, R*=0.83) but with an oversimplified model, whereas the sole application of the (L) penalty
reduces stability with a risk of dropping the important variables. OLS is the worst among all as it
has bigger prediction errors (MAE = 0.20, MSE = 0.30) and unstable coefficients and hence is not
suitable for multicollinearity data sets.Model Ranking by Preference and Recommendation
1. Elastic Net (4=0.5), (L1 =0.5) and Ridge-Elastic Net (A= 0.5), (L1 =0.25)) (tied): Ranked
first for their lowest MAE (0.17), MSE (0.26), and highest R? (0.84), with moderate
simplicity (excluding ( X9 )) and high stability. They are the optimal choice when predictive
accuracy is the priority.
2. Ridge (A= 0.5)): Ranked third, with equivalent performance (MAE = 0.17, MSE = 0.26, R?
= (0.84) but less simplicity (retaining all variables), suitable when variable selection is not
required.
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3. Lasso-Elastic Net (4= 0.5), (L1 = 0.75): Ranked fourth, offering good performance (MAE =
0.18, MSE = 0.27, R? = 0.83) and greater simplicity (excluding (X8), (X9)), ideal when
balancing simplicity and accuracy is desired.

4. Lasso (A= 0.5)): Ranked fifth, similar to Lasso-Elastic Net in performance and simplicity,
but less stable due to the absence of (L2), limiting its suitability for strongly correlated data.

5. OLS: Ranked last due to the highest MAE (0.20), MSE (0.30), and lowest R? (0.80), with no

ability to effectively address multicollinearity.
Ridge-elastic nets or Elastic Net are the favored ones when maximum predictive accuracy
in highly multicollinear datasets is sought. Lasso-Elastic Net is more so when model
parsimony (variable removal) is sought in addition to decent performance. Ridge is best for
when the inclusion of all variables is sought, and OLS and Lasso should be eschewed due to
their shortcomings regarding stability and regularization.

Table 7. 95% Confidence Intervals for Performance Metrics Using Bootstrap

Model MAE (95% CI) MSE (95% CI) R% (95% CI)
Elastic Net [0.16-0.18] [0.25-0.27] [0.83-0.85]
Ridge-Elastic Net [0.16-0.18] [0.25-0.27] [0.83-0.85]
Lasso-Elastic Net [0.17-0.19] [0.26-0.28] [0.82-0.84]
Ridge [0.16-0.18] [0.25-0.27] [0.83-0.85]
Lasso [0.17-0.19] [0.26-0.28] [0.82-0.84]
OLS [0.19-0.21] [0.29-0.31] [0.79-0.81]

Table 8. Selected Hyperparameters from Grid Search

Model A o
Ridge 0.5 -
Lasso 0.5 -
Elastic Net 0.5 0.5
Ridge-Elastic Net 0.5 0.25
Lasso-Elastic Net 0.5 0.75

Update to Table 6 Reference: The performance differences in Table 6 were validated using 95%
confidence intervals from Bootstrap, confirming that Elastic Net and Ridge-Elastic Net are
statistically superior to OLS (p < 0.0018).

4 Discussion

The results of the study show that regularized regression models outperform OLS in
predicting internal migration rates by reducing the influence of high correlations (e.g., r = 0.85)
between (X1 ) (Income) and (X4 ) (Cost of Living) and successfully handle multicollinearity in
the 2500 region dataset (2020-2024). With minimum MAE (0.17), MSE (0.26), and maximum
R?(0.84), Elastic Net (£ =0.5), (L1 =0.5), and Ridge-Elastic Net (£ =0.5), (L1 = 0.25)) perform
best. They also balance coefficient stability (standard errors = 0.14-0.15) and medium variable
selection (apart from (X9 )). Ridge (£ =0.5)) is less preferred for model parsimony even though

it has the same predictive accuracy as them but keeps all variables (VIF = 12.5). Lasso-Elastic
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Net (£=0.5), (L1 =0.75)) and Lasso (A= 0.5)) are reduced by removing ( X3 ) and ( X9 ) with
smaller VIF (e.g., 11.0 for ( Xi )) with lower performance (MAE =0.18, MSE =0.27, R?=0.83).
OLS performs badly (MAE = 0.20, MSE = 0.30, R? = 0.80) with fluctuating coefficients and
large standard errors (e.g., 0.25 for ( X ), providing a testament to its inappropriateness for
multicollinear data. Farrar-Glauber test (2 = 145.6), ( p< 0.001)) and eigenvalue analysis
(smallest eigenvalue = 0.02, Condition Index = 35.7) confirm the presence of multicollinearity,
substantiating the need for regularization. Elastic Net and Ridge-Elastic Net are optimally
appropriate for prediction accuracy, while Lasso-Elastic Net is optimally appropriate where
model parsimony is most desirable.

Interpretation of Model Coefficients

In addition to estimating predictive accuracy, examining the coefficients of the best
prediction model provides insightful, substantial data on the most important internal
migration predictors. Our research showed that the Elastic Net model had the best balance
between stability and prediction accuracy. Here is an examination of its coefficients:
Income (X;): The estimated coefficient was 0.42, meaning that an increase of one unit in
the average monthly income index is equivalent to a 0.42-unit increase in the internal
migration rate, ceteris paribus. This demonstrates that the main attraction for migrants is
economic welfare.
Cost of Living (X4): The coefficient for the cost of living (X,) was -0.32. This is
theoretically true since it implies that the migration rate has a tendency to decline by 0.32
units for every unit increase in the cost of living index. This alludes to the necessity of
weighing affordability against high income, even though it is desirable.
Healthcare Quality (X¢): This had a coefficient of 0.27, meaning that internal migrants are
more drawn to areas with higher healthcare quality. This reflects the growing significance
of quality of life and public services in migration.
Variable Exclusion It's also important to note that Elastic Net set the Population Density
(Xo) coefficient to zero, indicating that population density in and of itself was not a
significant predictor in this model after controlling for other infrastructure and economic
factors.
The 95% confidence intervals from Bootstrap show no overlap between Elastic Net, Ridge-
Elastic Net, and OLS, confirming their statistical superiority (p < 0.001). Grid Search
ensured optimal hyperparameters, with A= 0.5 and o = 0.5 for Elastic Net balancing variance
reduction and variable selection, achieving the highest R? (0.84) and lowest MSE (0.26).

5 Conclusion

According to this study, regularized regression models (Ridge-Elastic Net, Elastic Net,

Lasso-Elastic Net, Ridge, and Lasso) significantly outperform OLS in predicting internal

migration rates and are effective at resolving multicollinearity. To get the most predictive power
out of highly correlated data sets, Elastic Net and Ridge-Elastic Networks are the best options
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(MAE =0.17, MSE = 0.26, R? = 0.84). When model simplicity is unique, Lasso-Elastic Net works
best, removing non-essential predictors (Xs and Xo) without noticeably affecting performance
(MAE = 0.18, MSE = 0.27, R2 = 0.83). Ridge works well in situations where keeping all the
variables is essential. whereas regularization and stability constraints make Lasso and OLS less
appealing, respectively. In order to improve robustness and applicability, future studies should
investigate cross-validation for parameter tuning, incorporate non-linear models, and generalize
results across multiple datasets. The results highlight how crucial regularization is for controlling
multicollinearity and producing reliable and understandable models for migration research.
Bootstrap significance tests and Grid Search hyperparameter tuning enhanced result reliability,
making Elastic Net and Ridge-Elastic Net robust choices for addressing multicollinearity in
internal migration data.
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