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Abstract 

The research compares the survival performance of hybrid survival models that merge traditional 
statistical techniques with machine learning to forecast survival outcomes in lung cancer 
patients. The study compares a group of 165 patients from Tanta Oncology Institute and Kafr El-
Sheikh Chest Hospital between 2020 and 2024 by contrasting individual models—Cox 
Regression, Logistic Regression, and Support Vector Machines (SVM)—with two hybrid 
models: Cox-SVM and Logistic-SVM. High-risk predictors such as smoking, occupation, age, 
treatment modalities, COVID-19 infection, and disease stage were found and modeled through 
Kaplan-Meier analysis for feature selection. The results show that the Cox-SVM hybrid model 
gives the best results among all the other models with a classification accuracy of 94.5%, 
sensitivity of 90%, specificity of 96%, and misclassification rate of 5.45%. The Logistic-SVM 
hybrid then comes into play with a 90.91% accuracy, and then the individual models (Cox: 
80.6%, Logistic: 67.88%, SVM: 81.8%). Hybrid model performance is because Cox's hazard-
based model combines SVM's capability to work with non-linear relationships and produce 
better predictive accuracy and clinical relevance. Despite small sample size limitations and 
omission of certain variables, these results suggest that hybrid approaches in survival analysis are 
a valuable resource in personalized medicine. These models must be validated with larger, more 
diverse datasets and other prognostic factors in future research. 

Keywords: Survival Analysis؛ Hybrid Models؛ Kaplan-Meier؛ Machine Learning؛ Cox 
Regression. 

 

 1. Introduction 

Survival analysis is a statistical specialty that deals with the time elapsed until a specific event 
occurs. It is becoming increasingly relevant across various fields such as medicine, engineering, 
and business. As data becomes increasingly complex, the discipline has experienced continuous 
growth in analytical techniques, and mixed models have proved to be powerful analytical tools. 
Such models integrate the characteristics of other models to become more comprehensive and 
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accurate in data analysis, with characteristics of interdependencies and determinants of various 
types. 

Hybrid models extend the limitations of conventional models, such as the proportionality 
assumption of hazards and distributional stability, by combining the strengths of multiple models 
into a single analytical model. Such flexibility allows for complicated interactions of multiple 
variables and their influences on survival to be modeled while controlling different levels of 
variance and heterogeneity in the data. In most disciplines, these models yield a better 
understanding of determinants of survival, enhance predictability, and enable better-informed 
decision-making. These models need to be used correctly through clear comprehension of their 
parameters and features to enable proper interpretation of the findings. Mixed models are a key 
and new development in the survival analysis armamentarium, an advance in the field. 
Numerous researchers are studying survival analysis as can be seen from recent studies in the 
field. Yakubu et al.'s (2022) study introduced a novel way to study heterogeneous survival data 
through a two-part mixed model: gamma-gamma and log-logistic-gamma. The authors 
conducted simulations to assess the performance of the model and utilized the expectation-
maximization (EM) algorithm to estimate parameters. They checked consistency and stability 
with mean squared error (MSE) and root mean square error (RMSE) and compared the mixed 
model with one classical distribution under real data. They concluded that a log-logistic-gamma 
mixed model gave a better fit. As a result, these results indicate that mixed models are more 
appropriate for complex survival data with heterogeneity. 

In addition, Cuthbert et al., (2022) likened a variety of survival models for predicting revision 
risk 8 years after total hip and knee arthroplasty. The research, based on over 400,000 
procedures, established that Cox and flexible parametric models performed best in most 
situations, despite all approaches having similar discrimination. They also found poorer 
calibrated random survival forests for patients with total knee arthroplasty and discussed the 
incremental value of such advanced analyses over regression models, at least for predictive 
performance and variable importance scores. 

Xiao et al., (2022) compared machine learning and Cox regression for breast cancer prognosis 
using a retrospective cohort of over 22,000 patients. The random survival forest (RSF) model 
slightly outperformed other models concerning discriminative ability, as demonstrated by the 
highest C-index. All models showed good calibration. The study identified important prognostic 
factors including TNM staging, neoadjuvant therapy, lymph node metastases, age, and tumor 
diameter. 

In a different context, Al-Essa et al., (2023) investigated Gompertz models under competing 
risks and a generalized type-II hybrid censoring scheme, focusing on life tests of products from 
two production lines with two failure causes. They derived maximum likelihood estimators and 
Bayesian estimators using MCMC methods and assessed estimator performance with simulations 
and a real dataset. The results showed that informative Bayesian priors and bootstrap-t methods 
offered advantageous estimation. 
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Conversely, Cannes et al., (2023) introduced a conformal prediction technique that provides 
calibrated, covariate-dependent lower bounds for survival time predictions, suitable for any 
survival prediction model under Type-I right censoring. They show that their bounds, even when 
assuming conditionally independent censoring, possess a doubly robust characteristic where 
marginal coverage is roughly guaranteed if either the censoring mechanism or conditional 
survival function is accurately estimated. This finding was also confirmed through simulations 
and analysis of real COVID-19 data from the UK Biobank. 

Lee (2023) provides an overview of the general application of simple survival analysis methods, 
i.e., Kaplan-Meier and Cox proportional hazards models, which are the pillars in medical 
research when considering time-to-event. The article points out the problem of handling 
censoring and varying observation times but states the non-parametric nature of Kaplan-Meier 
and the parametric nature of Cox regression, i.e., the assumption of proportional hazards. The 
article also details testing methods for this assumption, e.g., the log-minus-log plot, and suggests 
time-dependent Cox regression as a solution when proportionality is not met. This again 
emphasizes the value of good model selection and assumption testing to produce valid and 
coherent survival analysis. These methods, as mentioned, are the basis of statistical techniques 
on which newer techniques, like the hybrid techniques in your research, attempt to build and 
extend. 

Lu et al., (2023) created a hybrid model that integrates CNN and RNN to forecast long-term 
survival in lung cancer screening participants who succumbed to cardiorespiratory issues. The 
CNN segment extracted features from CT scan images, while the RNN segment processed time-
series data to provide a broader context. Different LSTM models were utilized to manage the 
irregularities in follow-up times. The integrated model achieved an AUC of 0.76, exceeding 
human performance in predicting cardiovascular mortality. The Cox Proportional Hazard model 
validated that including follow-up history enhanced survival predictions (IPCW C-index of 
0.75). The results indicate that monitoring cardiorespiratory morbidity can be improved through 
longitudinal imaging. 

Mandel et al., (2024) explored different survival analysis methods for predicting car part failures, 
developing a hybrid model to combine the strengths of Kaplan-Meier, Cox, random survival 
forest, and gradient boosting. They combined individual models through a weighted sum, and 
their hybrid model performed better as a predictor. They employed two datasets to understand 
the impact of the models as part of trying to enhance product reliability and user experience in-
vehicle systems. 

Germer et al., (2024) conducted a comparison of estimators for survival models in lung cancer 
patients, using the German Schleswig-Holstein cancer registry data. The study contrasted the 
Cox Proportional Hazards Regression model (CoxPH) with Random Survival Forests (RSF) and 
two neural network models (DeepSurv and TabNet). Results indicated that CoxPH with 
MissForest imputation was best when making use of UICC staging, while RSF was best when 
making use of TNM information. The study also employed explainability metrics to emphasize 
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the importance of the stage of tumor progression and metastasis. This study extends prior work 
using a new dataset, applying TabNet to survival analysis, and quantifying the impact of 
imputation. 

Salem et al., (2024) investigated statistical inference for a generalized progressive hybrid type-II 
censored Weibull model under competing risks. The study derived maximum likelihood, and 
Bayesian estimates for Weibull distribution parameters with different scales and a common 
shape parameter, using Markov Chain Monte Carlo techniques for Bayesian computations. The 
authors obtained estimates under squared error and linear exponential loss functions with 
independent gamma priors. Simulation studies and real-world examples were utilized to illustrate 
the theoretical developments. 

In turn, we surveyed a lot of works describing the ongoing advances in survival analysis, from 
classical models to hybrids and modern techniques such as deep learning. All of these 
improvements present new channels for adjusting to complex data and coming to more accurate 
conclusions in various fields. 

The current study is novel in presenting a new hybrid approach that blends the traditional Cox, 
logistic regression, and Kaplan-Meier models with the power of machine learning models (SVM 
and SVR) through kernel functions. This allows it to process complex and non-linear survival 
data in a superior manner. Compared to other studies that tend to focus on either traditional 
models or specific machine learning models, this study combines them to make sure both have 
their highest advantages and that they provide more flexible solutions than studies focusing on 
one type of model. Also, it outperforms the limitations of traditional models in assumptions of 
proportionality and develops models that can be flexible to varying data patterns. Finally, the 
study focuses on rigorous evaluation of the hybrid models that facilitate a better understanding of 
what they can achieve and how they can be applied to survival analysis. 

2. Methodology 

The paper utilizes a comparative approach to the assessment of predictive models for lung cancer 
patient survival using a combination of classical statistical methods and machine learning. It 
compares five models: Cox Regression, Logistic Regression, and Support Vector Machines 
(SVM), together with two hybrid models (Cox-SVM and Logistic-SVM). It follows the Kaplan-
Meier method in the selection of variables, after which it conducts separate analyses for each of 
the models, where the conceptual backgrounds and primary mathematical representations are 
outlined for each. 

 2.1 Kaplan-Meier Method  

Kaplan-Meier (KM) estimator, a non-parametric approach, calculates the survival probability 
over time with censored data in consideration. It is used here to identify important predictors by 
comparing survival curves across variable levels using the log-rank test. The survival function is 
given as: 
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 (1)       

where 

dj is the number of events(e.g., deaths) at time tj and nj is the number at risk just before tj. 
Significant variables (p < 0.05) are selected for subsequent modeling. 

2.2 Cox Regression Mode   

Cox Regression, a semi-parametric proportional hazards model, analyzes the effect of covariates 
on survival time. It assumes a baseline hazard modified by explanatory variables, expressed as: 

ℎ(𝑡) =  ℎ଴ (𝑡)𝑒𝑥𝑝 𝛽ଵ𝑥ଵ  +  𝛽ଶ𝑥ଶ + ⋯ … … … . . +𝛽௣𝑥௣        (2) 

where 

H0(t): is the baseline hazard, and Bi are coefficients estimated via partial likelihood. Variable 
selection uses backward elimination, retaining significant predictors. 

2.2.1. Morality Test of the Estimated Model: 

Here, it is determined whether the independent variables (Xᵢ) play a role in explaining the 
behavior of the dependent variable (Yᵢ). The overall fit of the model is assessed by calculating 
the coefficient of determination, which we can express in the following formula: 

 

  3)                       (  

Where 

R²: Value of the coefficient of determination. 

Lf: Represents the partial likelihood logarithm of the model containing all the variables. 

L0: Represents the partial likelihood logarithm of the model not containing any variables. 

n: The total number of observations. 

 2.2.2.Test the Significance of Estimated Parameters 

The second method of testing the significance of the model estimated is testing the significance 
of each parameter of the model estimated individually. Here, the Wald statistic is used most 
frequently. Notice that the Wald statistic follows a chi-squared distribution (𝑥2) with one degree 

of freedom and can be written as follows: 

 (4) 
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 Where 

S.Eβĵ: Represents the standard error of the model parameters. 

β̂j: Represents the estimated parameter of the model. 

2.3 Logistic Regression 

Logistic Regression models binary outcomes (e.g., survival vs. death) as a function of predictors, 
using the logit transformation: 

 

 (5)  

 

 

Where p is the probability of the event, and coefficients Bi are estimated via maximum 
likelihood. It is suited for classification but does not account for time-to-event or censoring. 

2.3.1 Goodness-of-fit test for logistic regression 

The logistic regression model's fit is evaluated using several criteria, the most important being: 

 Hosmer and Lemshow test: 
This test is used to examine whether there is a significant difference between the 
observed values and the predicted values of the model, using. 
 
 

   

χ2: Represents the difference between the logarithm of the likelihood in the case of the 
model without independent variables (with only the intercept) and the logarithm of the 
likelihood in the case of the model with all independent variables. 
Ln (l0): Represents the logarithm of the likelihood for the model with only the intercept. 
RL

2: Represents the proportion of reduction in the absolute value of the logarithm of the 
likelihood, and a measure of the improvement in goodness of fit due to the addition of 
independent variables. Its value ranges between zero and one. 
RL

2=0: There is no benefit or effect of the independent variables on the dependent 
variable. 
RL

2=1: There is a perfect benefit or effect of the independent variables on the dependent 
variable. 
R2: The coefficient of determination for logistic regression (R2) is used to test the strength 
of the logistic model, i.e., the proportion of the contribution of the influencing factors 
included in the estimated model on the dependent variable (response variable). 
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 . Cox & Snell R² coefficient (RCS
²): 

 

 Nagelkerke R² coefficient (RN
²): 

 

To estimate the importance of the coefficients in the logistic regression model, apart from the 
above-discussed Wald statistic, another measure that is reported to be better than the Wald 
statistic is partial R². This measure assesses the relative contribution of the independent variables 
in the model and is calculated based on the χ² value. A statistically significant χ² value signifies 
that the independent variable is statistically significant, and vice versa, thus justifying the 
inclusion of the variable in the final model. 

2.4 Support Vector Machines (SVM) 

SVM, a supervised learning algorithm, classifies data by finding an optimal hyperplane that 
maximizes the margin between classes. For non-linear data, a Radial Basis Function (RBF) 
kernel is applied: 

 (6) 

 

The decision function is: 

 

  7) (  

 

Where;  

i am Lagrange multipliers,yi are class labels, and b is the bias term. Parameters(𝛾, 𝑐)  α  

control flexibility and regularization 
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2.5 Hybrid Models 

1. Cox-SVM: Combines Cox Regression’s hazard-based variable selection with SVM’s 
classification power. Significant variables from Cox are input into SVM with an RBF kernel 
(𝜖 = 0.1, 𝐶 = 1) 

2. Logistic-SVM: integrates Logistic Regression’s predictor identification with SVM’s non-
linear classification, using the same kernel parameters. 

These hybrids aim to enhance accuracy by leveraging statistical insights and machine learning 
adaptability. 

2.6 Comparison Between Individual and Hybrid Models 

The classification table is a cornerstone of model evaluation, summarizing predictive 
performance by comparing observed outcomes (e.g., survival or death, early or late stage) 
against model predictions. For this study, a binary classification framework is adopted: Class 1 
(early-stage/survived) and Class 2 (late-stage/did not survive). The table structure is as follows: 
 

classification table 

Class 2 (Positive) Class 1 (Negative) Predicted \ Observed 

False Negative (FN) True Negative (TN) Class 1 (Negative) 

True Positive (TP) False Positive (FP) Class 2 (Positive) 

 

1. True Positives (TP): Correctly predicted Class 2 cases (e.g., late-stage patients identified as 
such). 

2. True Negatives (TN): Correctly predicted Class 1 cases (e.g., early-stage patients identified 
as such). 

3. False Positives (FP): Class 1 cases incorrectly predicted as Class 2 (e.g., early-stage patients 
misclassified as late-stage). 

4. False Negatives (FN): Class 2 cases incorrectly predicted as Class 1 (e.g., late-stage patients 
misclassified as early-stage). 

Model Comparison Criteria and Metrics 

1. Accuracy: The proportion of correct predictions, calculated as: 

(8) Accuracy = 
𝑻𝑷ା𝑻𝑵

𝑻𝑷ା𝑻𝑵ା𝑭𝑷ା𝑭𝑵
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2. Sensitivity (Recall): The ability to detect Class 2 cases, crucial for identifying high-risk 
patients: 

(9) Sensitivity = 
𝑻𝑷

𝑻𝑷ା𝑭𝑵
  

3. Specificity: The ability to correctly identify Class 1 cases, minimizing false alarms: 

(10) Specificity = 
𝑻𝑵

𝑻𝑵ା𝑭𝑷
 

4. F1-Score: The harmonic mean of precision and sensitivity, balancing detection and reliability: 

 

 

 

Where 

(11) Precision= 
𝑻𝑷

𝑻𝑷ା𝑭𝑷
  

5. Misclassification Rate: The proportion of incorrect predictions, indicating error magnitude: 

(12)         Misclassification Rate = 
𝑭𝑷ା𝑭𝑵

𝑻𝑷ା𝑻𝑵ା𝑭𝑷ା𝑭𝑵
  

6. R² (where applicable): Variance explained by predictors in Cox and Logistic models, 
assessing explanatory power. 

3. Applied study 

This research aims to conduct a comparative study between individual models—namely, Cox 
regression, logistic regression, and support vector machines (SVM)—and hybrid models, 
specifically a hybrid Cox-SVM model and a hybrid logistic regression-SVM model. The purpose 
is to analyze survival time, and characterize, and predict outcomes for a sample of 165 lung 
cancer patients from the Tanta Oncology Institute and Kafr El-Sheikh Chest Hospital from 2020 
to 2024. The analysis will be performed using statistical software packages including SPSS 28, 
Stata 15, and Stat Graphics 19. The research variables are described as follows: 
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Table 1: Description and Coding of Variables in the Lung Cancer Survival Analysis Study 

Coding Description Variable Name Variable Type 

 Time interval between 
the date of diagnosis and 
the date of death, 
measured in months. 

Patient Survival Time 
(Months) 

Dependent 

 

0=Loss to Follow-up, 1 = 
Event Occurrence (Death) 

indicates whether the 
event (death) occurred or 
if the patient was 
censored. 

Censoring Status  

1=Smoker, 2 = Non-Smoker Categorical variable 
indicating whether the 
patient is a smoker. 

X1: Smoking Independent 

1=Family History Present, 2 = 
Family History Absent 

Categorical variable 
indicating the presence 
or absence of a family 
history of disease. 

X2: Family History Independent 

1=Employee, 2 = Worker, 3 = 
Retired, 4 = Housewife, 5 = 
Child, 6 = Student 

A categorical variable 
representing the patient's 
occupation. 

X3: Occupation Independent 

1=Male, 2 = Female Patient's gender. X4: Gender Independent 

Continuous (measured in 
years( 

The patient's age is in 
years at the time of 
diagnosis. 

X5: Age (Years) Independent 

1=Exposed to Radiation 
Therapy, 2 = Not Exposed to 
Radiation Therapy 

Whether the patient 
received radiation 
therapy. 

X6: Radiation 
Therapy Exposure 

Independent 

1=Surgery, 2 = 
Chemotherapy, 3 = Radiation, 
4 = More than One Method 

The treatment methods 
used for the patient. 

X7: Treatment 
Methods 

Independent 

1=Married, 2 = Single Patient's marital status. X8: Social Status Independent 

1=Consanguinity Present, 2 = 
No Consanguinity 

Indicates if the parents of 
the patient were related. 

X9: Consanguinity Independent 

1=Infected, 2 = Not Infected Whether the patient was 
infected with COVID-19. 

X10: COVID-19 
Infection 

Independent 

1=Chronic Diseases Present, 2 
= No Chronic Diseases 

Presence of chronic 
diseases. 

X11: Chronic 
Diseases 

Independent 

1=Urban, 2 = Rural The patient's primary 
place of residence. 

X12: Place of 
Residence 

Independent 

1=Stage I, 2 = Stage II, 3 = 
Stage III, 4 = Stage IV 

The stage of lung cancer 
at the time of diagnosis. 

X13: Stage of Disease Independent 
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For assessing the variables that are most significant and relevant for survival time, the Kaplan-
Meier method and log-rank test are initially used. It takes into account the data by comparing 
each variable individually with the dependent variable, i.e., survival time. This is used before 
using any of the aforementioned statistical methods. The null hypothesis of the test is H₀: h(t/xᵢ) 
= 0, i.e., there are no statistically significant differences in survival functions at different levels 
of the variable (xᵢ). The alternative hypothesis is H₁: h(t/xᵢ) ≠ 0, i.e., there are statistically 
significant differences in survival functions at different levels of the variable xᵢ. If yes, then the 
variable is included in the model. The results were as follows: 

Table 2: Kaplan-Meier and Log-Rank Test Results 

P-value Log-Rank Events n Levels Variable 
0.00216 12.78 155 190 1= Smoker X1(Smoking) 

23 70 2= Non-Smoker 
0.451 2.23 66 127 1= Family History Present X2(Family 

History) 40 133 2= Family History Absent 
0.004 15.278 15 89 1= Employee Occupation) 3X (  

72 92 2=Worker 

5 30 3== Retired 

7 20 4= Housewife 
4 11 5= Child 
 18 6= Student 

0.354 1.265 77 178 1= Male X4( Gender) 
34 82 2= Female 

0.382 8.057 73 102 ≤60 X5(Age)  
84 156 >60 

0.0263 5.320 52 192 1= Exposed to Radiation 
Therapy 

X6( Radiation 
Therapy) 
 27 66 2= Not Exposed to 

Radiation Therapy 
0.0486 4.894 25 79 1= Surgery X7 Treatment 

Methods) 53 83 2= Chemotherapy 
  71 92 3= Radiation  

3 6 4= More than One Method 
0.078 6.12 91 163 1= Married X8( Social 

Status) 58 97 2= Single 
0.451 2.231 27 77 1=Consanguinity Present Consanguinity)9X (  

63 183 2= No Consanguinity 
0.046 10.850 97 123 1= Infected X10(COVID-19 

Infection) 
38 137 2= Not Infected 

0.286 1.125 46 89 1= Chronic Diseases 
Present 

X11 (Chronic 
Diseases) 
 96 171 2= No Chronic Diseases 

0.362 1.705 63 178 1= Urban X12 ( Place of 
Residence) 22 82 2= Rural 

0.002 13.785 42 78 1= Stage I X13( Stage of 
Disease) 23 69 2= Stage II 

48 81 3= Stage III 
29 32 4= Stage IV 
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This article provides a statistical analysis of patient data of lung cancer using Kaplan-   Meier, 
and  Log-Rank tests for variables of significant influence on survival time. Kaplan-Meier 
estimates the survival function, which plots the probability of survival over time, and the Log-
Rank test compares survival curves between groups, testing the null hypothesis of no difference. 
A P-value < 0.05 rejects this hypothesis, indicating significant differences in survival. Results 
show that smoking (X1), occupation (X3), radiation therapy (X6), treatment methods (X7), 
COVID-19 infection (X10), and disease stage (X13) significantly affect survival. Smoking is 
associated with reduced survival because of lung impairment and aggressive tumor types; 
occupation can be associated with exposure to carcinogens or access to healthcare; radiation 
therapy could represent advanced disease or side effects that affect survival; variations in 
treatment type could be due to differences in treatment efficacy by cancer type and stage; 
COVID-19 can worsen the condition of lung cancer patients; and later disease stage is associated 
with worse prognosis. Family history, gender, age, social status, consanguinity, chronic illness, 
and residence were not significantly influential, where small numbers or confounding factors 
may obscure effects. As an observational study, causal inferences are limited, selection biases are 
possible, and results must be interpreted clinically in the context of individual patient 
circumstances and treatment availability. 

3.1 Cox – Regression 

Cox regression is a method of survival analysis used for modeling the time to an event. It has 
among its major assumptions the requirement that the dependent variable be composed of two 
parts: the survival time and a binary (dichotomous) indicator variable. From variables that had 
been proven statistically significant from the results of prior studies and affect survival time via 
the Kaplan-Meier method, that is, seven variables: X1 (Smoking), X3 (Occupation), X5 (Age), X6 

(Exposure to Radiotherapy), X7 (Treatment Methods), X10 (COVID-19 Infection), and X13 
(Disease Stage), we will examine the goodness of fit of the model. 

Table 3: Goodness-of-Fit Test for the Cox Regression Model 

p-value Df 𝜅ଶ -2log likelihood Model 

 -  -  - 604.96 Block0 

0.000 7 59.96 545 Block1 

 

The goodness-of-fit of the Cox regression model was evaluated using the likelihood ratio test, as 
detailed in Table 3. This test compares the null model (Block0), with a -2log likelihood of 
604.96, against the full model (Block1), which includes seven predictors—Smoking (X1), 
Occupation (X3), Age (X5), Exposure to Radiotherapy (X6), Treatment Methods (X7), COVID-
19 Infection (X10), and Disease Stage (X13)—yielding a -2log likelihood of 545. The resulting 
chi-square statistic of 59.96, with 7 degrees of freedom, and a p-value less than 0.001, indicates a 
statistically significant improvement in model fit. This confirms that these predictors collectively 
enhance the model’s ability to explain variations in survival time, supporting their relevance in 
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the survival analysis. When estimating a Cox regression model and using backward elimination, 
the variable 'Exposure to radiation therapy' (X6) was excluded. The results are as follows: 

Table 4:  Results of the Backward Elimination Method 

EXp(β) Wald S.E β௜ Variables 

3.189 11.789 0.339 1.16 X1 

0.821 2.787 0.118 -0.197 X3 

1.016 7.111 0.006 0.016 X5 

1.815 15.578 0.151 0.596 X7 

2.903 13.796 0.287 1.066 X10 

1.804 21.246 0.128 0.590 X13 

 Block1 

 p-value DF 𝜒ଶ -2log likelihood 

 0.000 6 76.598 528.362 

Table 4, labeled "Results of the Backward Elimination Method," details a Cox regression 
analysis evaluating survival time among lung cancer patients, demonstrating strong overall 
model significance with a -2log likelihood of 528.362, 6 degrees of freedom (Df), and a p-value 
< 0.001, affirming that the included variables—X₁ (Smoking), X₃ (Occupation), X₅ (Age), X₇ 
(Treatment Methods), X₁₀ (COVID-19 Infection), and X₁₃ (Disease Stage)—collectively account 
for survival variability. The regression coefficients (βi) indicate pronounced positive effects from 
X₁ (β = 1.16, Exp(β) = 3.189), tripling the hazard rate for smokers, and X₁₀ (β = 1.066, Exp(β) = 
2.903), nearly tripling it for COVID-19 cases, alongside moderate increases from X₇ (β = 0.596, 
Exp(β) = 1.815) and X₁₃ (β = 0.590, Exp(β) = 1.804). In contrast, X₅ (β = 0.016, Exp(β) = 1.016) 
shows a minimal per-year risk increase, while X₃ (β = -0.197, Exp(β) = 0.821) suggests a slight 
protective effect, though its significance is marginal (Wald = 2.787, p ≈ 0.05). 

In Table 4, Wald statistics underscore X₁₃ (21.246) as the dominant predictor, followed by X₇ 
(15.578) and X₁₀ (13.796), all highly significant (p < 0.05), with X₁ (11.789) and X₅ (7.111) also 
impactful, whereas X₃’s lower Wald value (2.787) advises cautious interpretation. Standard 
errors remain tight (e.g., 0.006 for X₅, 0.339 for X₁), enhancing coefficient reliability, yet the 
exclusion of X₆ (Radiation Therapy) through backward elimination implies limited statistical 
contribution in this context, despite its potential clinical relevance. This model effectively ranks 
X₁₃, X₇, and X₁₀ as primary survival influencers, with X₁ reinforcing smoking’s critical role, 
though verifying the proportional hazards assumption and reassessing excluded variables like X₆ 
could further strengthen its applicability. 
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Cox Proportional Hazards Model Equation: 

The hazard function can be represented as: 

 h(t/xi) = ho(t) exp (1.16X1 –0 .197 X3 +0 .016X5 +0 .596X7 +1.066X10+0.590X13) 

The coefficient of determination is calculated as follows: 

       

1- exp (2/165)[528.362-604.96] = 

   60.5% = 

An R-squared of 61.4% in the Cox model indicates that the independent variables explain 61.4% 
of the variance in survival time for lung cancer patients. A classification table was then created 
based on the hazard and survival functions, and the results were: 

Table 5: classification table for Cox-Regression 

Correct percent Observed Did Not 
Survive(1) 

Observed 
Survived(0) 

 

77.4% 20 73 Low Predicted Risk (0) 
83.33% 60 12 High Predicted Risk (1) 
80.6% 80 85 Over percent 

Based on Table 5, we can define the following classification outcomes: True Positives (TP) are 
the 60 individuals correctly predicted to not survive, found in the High Predicted Risk (1) row 
and Observed Did Not Survive (1) column; True Negatives (TN) are the 73 individuals correctly 
predicted to survive, located in the Low Predicted Risk (0) row and Observed Survived (0) 
column; False Positives (FP) are the 12 individuals incorrectly predicted to not survive (High 
Predicted Risk (1) but Observed Survived (0)); and False Negatives (FN) are the 20 individuals 
incorrectly predicted to survive (Low Predicted Risk (0) but Observed Did Not Survive (1). 

To calculate the model's performance, we compute different measures of performance. 
Sensitivity, or true positive rate, is a measure of the ability of the model to predict accurately 
those who did not survive, as calculated by the formula TP / (TP + FN) = 60 / (60 + 20) = 75%. 
It indicates that the model accurately predicted 75% of the passengers who did not survive. 
Specificity or true negative rate measures how accurately the model predicted the survivors. It is 
given by TN / (TN + FP), which is equal to 73 / (73 + 12) = 85.88%. The model correctly 
predicted the survivors with 85.88% accuracy. Accuracy, the proportion of correct classification 
of all instances overall, is (TP + TN) / (Total) = (60 + 73) / 165 = 80.6%, i.e., the model has 
correctly classified 80.6% of all instances. Finally, the misclassification rate, the proportion of 
misclassifications, is (FP + FN) / (Total) = (12 + 20) / 165 = 19.39%, i.e., the model has 
misclassified 19.39% of all instances. 
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These performance metrics provide valuable insights into the model's predictive capabilities but 
should be interpreted within the context of lung cancer survival. While the model demonstrates 
reasonably good accuracy (80.6%), sensitivity (75%), and specificity (85.88%), the relative 
importance of each metric depends on the clinical priorities. For instance, if early intervention 
for high-risk patients significantly improves outcomes, prioritizing sensitivity may be crucial, 
even at the cost of a slightly lower specificity. Conversely, if avoiding unnecessary interventions 
for low-risk patients is paramount, prioritizing specificity would be more appropriate. It's also 
important to note that the Cox model assumes proportional hazards and alternative variable 
selection techniques beyond the backward elimination used here might further optimize the 
model's predictive performance. 

Based on the Wald statistic, a measure of the significance of each predictor variable, we can rank 
the importance of factors influencing survival time in this model. Disease Stage (X13) emerges as 
the most significant predictor (Wald = 21.246), followed by Treatment Methods (X7, Wald = 
15.578), COVID-19 Infection (X10, Wald = 13.796), and Smoking Status (X1, Wald = 11.789). 
Age (X5, Wald = 7.111) shows a moderate association, while Occupation (X3, Wald = 2.787) 
exhibits the weakest association. It's important to remember that statistical significance, as 
reflected by the Wald statistic, doesn't always equate to practical importance, and the model-
specific nature of these findings and potential multicollinearity among predictors should also be 
considered in the interpretation. 

Regarding the behavior of the survival and hazard functions, we observe from the following 
figures: 
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The survival function, demonstrating a typical decreasing trend, illustrates the proportion of lung 
cancer patients surviving over time, while the hazard function reveals a mostly flat then suddenly 
increasing hazard of death, meaning the immediate risk of death is somewhat constant but then 
gradually increases throughout the study period. 

3.2 logistic Regression 

Logistic regression is advantageous due to its lack of assumptions regarding the normality of 
independent variables and the linear relationship between independent and dependent variables. 
Furthermore, it excels in classification and prediction tasks. The model fit of a logistic regression 
model for the given data is being evaluated based on independent variables that have 
demonstrated statistical significance in influencing survival time, as determined by Kaplan-
Meier analysis. These variables are: Smoking (X1), Occupation (X3), Age (X5), Radiotherapy 
Exposure (X6), Treatment Methods (X7), COVID-19 Infection (X10), and Disease Stage (X13). 
These variables were found to be statistically significant predictors of survival time. To assess 
the model's goodness-of-fit and its suitability for the data, the following will be examined: 
 

Table 6: Goodness-of-Fit Test for the Logistic Regression Model 

p-value Df χ2 

0.000 7 43.87 

Table 6 reveals that the χ² value, representing the difference between the log-likelihood of the 
model with independent variables and the log-likelihood of the model with only the intercept 
(i.e., without independent variables), yields a P-value of 0.000. Since this P-value is less than 
0.05, it indicates a good model fit and its suitability for the data. Consequently, we proceed to 
estimate the logistic regression model. Using the Backward Elimination Method, the variables 
Smoking (X1), Occupation (X3), Age (X5), Treatment Methods (X7), and Disease Stage (X13) 
were found to be significant. Radiotherapy Exposure (X6) and COVID-19 Infection (X10) were 
excluded due to their statistical insignificance. To test the validity of the new logistic model with 
five independent variables, the Hosmer-Lemeshow test was employed, and the results are as 
follows. 
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Table 7: Hosmer-Lemeshow test 

sig Df χ2 

0.778 5 4.587 

 

Table 7 presents the results of the Hosmer-Lemeshow test for assessing the goodness of fit of the 
logistic regression model. The test yielded a Chi-square value of 4.587 with 5 degrees of 
freedom and a P-value of 0.778, which is much greater than the conventional significance level 
of 0.05. This indicates that we fail to reject the null hypothesis, suggesting that the model fits the 
data well, as there are no significant differences between the observed and expected frequencies. 
Consequently, the estimated model, which includes the five independent variables—Smoking 
(X1), Occupation (X3), Age (X5), Treatment Methods (X7), and Disease Stage (X13)—can be 
reliably used for prediction and analysis purposes. 
 

Table 8: Goodness-of-Fit of the Logistic Regression Model: R-Square Measures 

Negelkereke R square Cox 8 snell R square log-likelihood -2 

0.5418 0.5415 540.62 
 

Table 8 presents the R-square measures for the logistic regression model, where the Cox & Snell 
R-square is 0.5415 and the Nagelkerke R-square is 0.5418. The Cox & Snell R-square indicates 
that the model explains approximately 54.15% of the variance in the dependent variable, though 
it has a theoretical limitation of not reaching 1. Corrected for this limitation, the Nagelkerke R-
square suggests the model explains around 54.18% of the variance. These R-square values, 
suggesting a reasonably strong fit, must be considered with other diagnostics to evaluate the 
overall adequacy of the model for the specific data, accounting for variance left unexplained. The 
parameters of the logistic regression were estimated as follows: 

Table 9 :Estimation of Logistic Regression Parameters. 

EXp(β) Sig Wald S.E βi Variables 

3.625 0.003 8.302 0.447 1.288 X1 

0.538 0.001 10.957 0.187 -0.619 X3 

1.019 0.035 5.641 0.008 0.019 X5 

1.585 0.031 4.597 0.215 0.461 X7 

1.778 0.002 9.488 0.187 0.576 X13 

9.150 0.042 4.179 1.083 2.214 constant 
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The logistic regression model in Table 9 reveals significant predictors of lung cancer survival, 
with coefficients (βi) indicating their impact. Smoking (X1, β = 1.288, Wald = 8.302, p = 0.003) 
markedly increases the odds of non-survival by 3.625 times (Exp(β)), reflecting its strong 
influence, supported by a modest standard error (S.E = 0.447). Disease Stage (X13, β = 0.576, 
Wald = 9.488, p = 0.002) follows with a 1.778-fold increase in odds per stage, its tight S.E 
(0.187) reinforcing estimate reliability. Occupation (X3, β = -0.619, Wald = 10.957, p = 0.001) 
shows the highest statistical significance, reducing odds by 46.2% (Exp(β) = 0.538), suggesting a 
protective effect depending on category coding, though its interpretation requires context. 
Treatment Methods (X7, β = 0.461, Wald = 4.597, p = 0.031) moderately elevates risk by 58.5% 
(Exp(β) = 1.585), while Age (X5, β = 0.019, Wald = 5.641, p = 0.035) has a minimal per-year 
effect (1.9%, Exp(β) = 1.019), possibly due to limited age variance or confounding factors. The 
constant (β = 2.214, Wald = 4.179, p = 0.042) sets a baseline odds of 9.150, though its higher 
S.E (1.083) suggests some variability. 

The model is highly statistically coherent, with all variables significant (p < 0.05) and low S.E 
values to enhance estimation confidence, except for the mild instability of the constant. 
Occupation (X3) is the most significant (Wald = 10.957), followed by Disease Stage (X13) and 
Smoking (X1), as in clinical practice, while Age (X5) and Treatment Methods (X7) are less 
significant. The equation was a good fit for: 

logit(p) = 2.214 + 1.288(X1) - 0.619(X3) + 0.019(X5) + 0.461(X7) + 0.576(X13) 

Captures non-survival log-odds, with a strong predictive model (54.18% variance explained per 
Nagelkerke R²). However, X3's negative impact calls for further exploration of category-specific 
effects, and X5's weak contribution suggests potential interaction effects (e.g., X1 × X13) for 
future research. Overall, the model is successful in capturing prevailing survival determinants, 
though refinement in variable interactions and coding can make it more accurate. To analyze the 
goodness of fit of the model in classification, the following classification table was tabulated: 
 

Table 10: Classification Table for Logistic Regression 

Correct Percent Observed Did Not 
Survive (1) 

Observed 
Survived (0) 

 

77.42% 21 72 Low Predicted Risk (0) 

55.56% 40 32 High Predicted Risk (1) 

67.88%   Overall Percent 

Table 10 presents the classification performance of the logistic regression model for lung cancer 
survival prediction, with 77.42% of low-predicted risk cases correctly classified (72 true negatives 
[TN] out of 93, with 21 false negatives [FN]) and 55.56% of high predicted risk cases correctly 
classified (40 true positives [TP] out of 72, with 32 false positives [FP]), yielding an overall 
accuracy of 67.88% (112/165). From this, we calculate sensitivity as TP / (TP + FN) = 40 / (40 + 
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21) ≈ 65.57%, indicating the model identifies 65.57% of those who did not survive; specificity as 
TN / (TN + FP) = 72 / (72 + 32) ≈ 69.23%, showing it correctly identifies 69.23% of survivors; 
precision as TP / (TP + FP) = 40 / (40 + 32) ≈ 55.56%, reflecting that 55.56% of predicted non-
survivors did not survive; and the F1-score as 2 × (Precision × Sensitivity) / (Precision + 
Sensitivity) = 2 × (0.5556 × 0.6557) / (0.5556 + 0.6557) ≈ 0.6017 (60.17%), balancing precision. 

3.3 Support vector machine 

Support Vector Machine (SVM) was used to model the survival time for a group of 165 lung 
cancer patients and classify them according to variables determined to be significant by using the 
Kaplan-Meier method. The variables are smoking (x1), occupation (x3), age (x5), radiation 
therapy exposure (x6), treatment type (x7), COVID-19 infection (x10), and stage of disease (x13). 
The calculation was carried out using the statistical package Stat Graphics 19 and the R 
programming language to determine the support vector function, using the Radial Basis Function 
(RBF) kernel and with tolerance on the error of e=0.1 and regularization parameter c=1. The 
outcomes of applying the SVM to classify the lung cancer patients into whether they are in the 
first group, which signifies an early stage, or the second group, which signifies the late stage, are 
as follows: 

Table 11: Classification Results Using Support Vector Machine (SVM) 

Predicted Class 2 Predicted Class 1 Group Size Actually 

22 103 125 Class 1 

32 8 40 Class 2 

Table 11 details the classification results of a Support Vector Machine (SVM) model with an 
RBF kernel, applied to 165 lung cancer patients split into early-stage (Class 1, n=125) and late-
stage (Class 2, n=40) groups, using significant Kaplan-Meier variables. The model correctly 
classifies 103 out of 125 Class 1 patients and 32 out of 40 Class 2 patients, achieving an overall 
accuracy of (TP₁ + TP₂) / Total = (103 + 32) / 165 = 135 / 165 = 81.8%. For Class 1, sensitivity 
is TP₁ / (TP₁ + FN₁) = 103 / (103 + 22) = 82.4%, precision is TP₁ / (TP₁ + FP₁) = 103 / (103 + 8) 
= 92.8%, and F1-score is 2 × (0.928 × 0.824) / (0.928 + 0.824) = 87.3%. For Class 2, sensitivity 
is TP₂ / (TP₂ + FN₂) = 32 / (32 + 8) = 80%, precision is TP₂ / (TP₂ + FP₂) = 32 / (32 + 22) = 
59.3%, and F1-score is 2 × (0.593 × 0.8) / (0.593 + 0.8) = 68.1%. Overall model metrics include 
macro-average sensitivity of (0.824 + 0.8) / 2 = 81.2%, macro-average precision of (0.928 + 
0.593) / 2 = 76.05%, macro-average F1-score of (0.873 + 0.681) / 2 = 77.7%, and a 
misclassification rate of (FP + FN) / Total = (8 + 22) / 165 = 18.2%. Class 1 shows high 
precision, indicating reliable early-stage detection, while Class 2’s lower precision reflects a 
higher false positive rate (22 out of 54), likely due to the dataset’s imbalance favoring Class 1. 
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3.3.1 Support vectors 

The support vectors in a Support Vector Machine (SVM) model represent a subset of 
observations—namely, the patients—closest to the separating hyperplane that divides the two 
groups within the data space, which, in this case, are Class 1 (early-stage) and Class 2 (late-
stage). These support vectors are the critical data points that determine the position and 
orientation of the hyperplane, as the model aims to maximize the margin—the distance between 
the hyperplane and the nearest data points from each class—to ensure optimal classification of 
new observations. The identification of support vectors is based on the output of the following 
function: yi (wTxi+b) where yi is the actual label of the patient (e.g., +1 for Class 1 and -1 for 
Class 2), W is the weight vector defining the hyperplane's direction, Xi is the feature vector for 
patient I, and b is the bias term determining the hyperplane’s position in space. Points satisfying 
the condition yi (wT Xi)=1 or -1 are deemed support vectors, as they lie directly on the margin's 
boundaries. As illustrated in the following table (presumed to contain additional details such as 
vector values or classifications), this formula calculates each patient's relative distance from the 
hyperplane, aiding in designating them as either support vectors or regular data points within 
their respective classes.    

To elaborate further, in the context of Table 11, if we assume the model relies on variables such 
as smoking (X1), age (X5), and others(XI) represents the set of values for these variables for each 
patient. The support vectors would be those records (patients) whose values are nearest to the 
boundary separating the two classes, directly influencing the final model’s configuration. For 
instance, a patient in Class 1 with values very close to Class 2 might become a support vector, as 
it defines the minimal margin from Class 1’s side. The same applies to Class 2. This process 
ensures the model focuses on the most challenging cases to distinguish, enhancing its ability to 
handle complex data, such as that of lung cancer patients, where variables like disease stage and 
treatment may intersect in non-linear ways. By prioritizing these boundary points, the SVM 
achieves robustness and precision, particularly in scenarios with intricate patterns, as seen in this 
medical application 

1. Support vectors in the first group 

X13 X10 X7 X6 X5 X3 X1 Observation 

1.3695 -0.2148 0.9187 0.2553 2.5463 0.4856 0.6128 5 

0.7778 0.2856 1.2225 -1.3111 2.1780 1.0564 -0.6725 7 

-1.7758 0.9875 -1.7894 -0.4527 0.3645 0.2324 0.7263 9 

1.2221 -0.7785 0.5284 0.2223 -1.7754 0.4465 0.5638 10 

-0.3189 1.2223 0.4447 0.3778 3.7889 -2.1250 -0.7125 11 

0.6444 0.6555 1.9990 2.3695 -0.4621 0.9785 -1.9231 15 

0.7585 0.4879 0.9998 0.8812 4.6890 0.6389 2.1350 18 
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0.9634 -1.8721 0.8758 0.6345 1.2339 0.7831 0.3458 19 

1.6502 2.9640 -0.7869 1.9780 -0.9967 1.0233 1.6854 25 

1.9877 0.7861 2.6890 -2.7890 -0.7236 0.8632 0.6890 38 

0.8787 0.9928 1.8882 0.6587 2.6500 1.2854 -0.4685 65 

0.9631 0.3891 0.4452 0.5528 1.9601 -0.2814 2.1964 83 

1.7888 0.4777 0.7778 0.5777 2.1145 0.7784 -0.3962 95 

0.4559 0.6891 0.6777 -0.6669 -0.2478 0.7564 1.0235 101 

-0.8847 -0.8881 0.4568 1.7778 3.3368 1.6897 0.8647 115 

2.1987 1.8876 -0.9639 2.1450 0.6115 -.2545 1.0235 119 

0.7788 0.6624 1.9821 1.8790 0.6298 2.7890 -0.6458 124 

0.4630 0.9991 0.5559 -0.8890 1.3698 0.6354 -1.9645 131 

2.5580 -0.3352 1.9630 0.4447 1.3335 0.3356 2.1369 141 

-0.8445 1.9967 -2.3690 0.8702 0.3564 -0.2546 -0.1254 148 

0.9652 0.5881 0.6669 0.9639 -0.4559 -0.4586 2.1879 155 

1.6350 -0.4586 0.8025 0.9987 2.8889 0.6354 -2.0147 162 

 

From the previous table, the number of support vectors in the first group reached (22) support 
vectors. The first column displays the observations representing the support vectors when using 
the Support Vector Machine (SVM). The remaining columns represent the values of the 
variables for those observations or patients. According to the statistical program, the 
standardized values of the variables were used (Standardize), meaning that the mean was 
subtracted and then divided by the standard deviation. 

2. Support vectors in the second group 

X13 X10 X7 X6 X5 X3 X1 Observation 
0.6547 0.7889 -0.7744 0.9969 0.6852 1.4440 0.5850 27 
0.9875 0.6354 1.3654 0.8756 2.6963 -0.9660 0.3987 31 
1.6548 0.7854 0.6665 -0.4778 -0.7780 2.3335 -1.7766 33 
-0.4562 1.2354 2.4566 1.6545 3.6354 0.4499 2.1150 39 
0.6665 -0.8547 -0.6687 0.5566 0.8895 0.6655 -0.9788 44 
0.7546 0.4056 0.5556 0.6589 -0.7778 0.6365 0.8866 49 
0.4566 1.5558 0.7584 0.7785 1.6879 -0.4499 0.7863 55 
2.6540 0.6777 0.7785 0.6398 3.8575 1.6677 -0.3645 97 
1.2350 1.3652 0.4566 1.7895 0.6963 0.8881 1.4563 133 
0.4578 0.5569 0.8888 0.6698 2.7832 0.7733 2.7895 145 
0.8876 0.8885 0.6540 0.8945 -0.4555 -0.4748 -0.7744 151 
0.8546 0.7754 0.8546 0.5858 3.6540 0.6578 0.6511 157 
0.3654 -0.7778 0.7444 1.4565 0.8654 0.6662 0.6897 161 
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The number of support vectors in the second group reached 13 vectors. The first column 
represents the observations that are the support vectors when using the Support Vector Machine 
(SVM), which starts with the observations (27, 31, 39, ..., 161). Therefore, the total number of 
support vectors in both groups is 35. 

3. Classification of observations in the first group 

"Observations are classified based on the output of the function 𝑦 = 𝑊T𝑋 + 𝑏. A patient is 
classified as being in an early stage of the disease and belonging to the first group, Class (1), or 
as being in a late stage of the disease and belonging to the second group, Class (2). To identify 
the observations (patients) in the first group that were incorrectly classified into the second 
group, see the following:  

 

Value (y) Observation Value (y) Observation Value (y) Observation 

0.03540 129 0.05478 51 0.02458 6 

0.04578 132 0.02580 53 0.06587 13 

0.05890 145 0.06528 77 0.01245 16 

0.058457 150 0.078546 79 0.078952 21 

0.04578 156 0.045754 81 0.01254 22 

0.047854 159 0.0.4578 105 0.02361 30 

  0.085487 118 0.035556 32 

  0.04578 127 0.045877 35 

 

It is noted that there are (22) observations from the first group that were incorrectly classified 
into the second group. This is called a classification error, and it corresponds with what is 
presented in the classification table. As for the observations that belong to the second group and 
were incorrectly classified into the first group, they are: 

Value (y) Observation Value (y) Observation 
-0.09725 100 -0.06879 38 

-0.07421 102 -0.07854 44 
-0.09318 129 -0.04571 53 

-0.07335 141 -0.06595 88 

 

From the previous table, there are (8) patients from the second group, meaning in a late stage of 
the disease, who were incorrectly classified into the first group as being in an early stage of the 
disease. This is consistent with the outputs of the classification table. To classify new 
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observations into one of the two groups, it is necessary to estimate the hyperplane equation, 
which is 𝑦 = 𝑊T𝑋 + 𝑏, and consequently obtain estimates for the weight vector (W) and the bias 
term (b), as shown in the following table. 

Table12: the weight vector (W) and the bias term (b) 

b X13 X10 X7 X6 X5 X3 X1  

0.3571 0.6857 0.5864 0.37854 0.2457 1.9454 2.1425 4.5871 𝑾 𝒊 

 

The previous table shows the weights of the variables. The weight value for the smoking variable 
(x1) is 4.5871, the weight value for the occupation variable (x3) is 2.1425, the weight value for 
the age variable (x5) is 1.9454, the weight value for the exposure to radiation treatment variable 
(x6) is 0.24.057, the weight value for the treatment methods variable is 0.3785, the weight value 
for the COVID-19 infection variable (x10) is 0.5864, and the weight value for the disease severity 
variable (x13) is 0.6857. The value of the constant term was randomly selected using the R 
program and is 0.3571. Based on this, new items are classified as follows: 

Table 13: Classification of New Lung Cancer Patients Using Support Vector Machine 

Predict X13 X10 X7 X6 X5 X3 X1 Observation 
Class 2 4 1 3 1 75 1 1 166 

Class 1 1 2 1 2 55 2 2 167 
Class 2 2 1 4 1 64 3 1 168 

 

For example, if there is a patient who is 75 years old, a smoker, employed, infected with 
COVID-19, exposed to radiation treatment, is treated with radiation, and is in the fourth stage of 
the disease, they would be classified into the second group, meaning in a late stage of the 
disease, and so on. 

3.4 Hybrid Model (Cox-SVM) 

This model was constructed by inputting all independent variables affecting lung cancer patient 
survival time (a total of 13 variables previously mentioned) into a Kaplan-Meier analysis. At this 
stage, the following variables were excluded: family history (x2), gender (x4), social status (x8), 
parental consanguinity (x9), chronic diseases (x11), and place of residence (x12). Only seven 
variables with statistical significance were retained. These variables were then entered into a Cox 
regression model, and using backward elimination, the variable exposure to radiation therapy 
was excluded. Six variables were retained: smoking (x1), occupation (x3), age (x5), treatment 
methods (x7), COVID-19 infection (x10), and disease stage (x13). These six variables were then 
input into a Support Vector Machine (SVM) using a Radial Basis Function (RBF) kernel with 
ε=0.1 and C=1. The classification results based on the hybrid model were as follows: 
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Table 14: Classification Results Using Hybrid Model (Cox-SVM)  

Predicted Class 2 Predicted Class 1 Group Size Actually 

5 120 125 Class 1 

36 4 40 Class 2 
 

The hybrid Cox-SVM model, as evaluated through Table 14, demonstrates exceptional 
performance in classifying 165 lung cancer patients into early-stage (Class 1, n=125) and late-
stage (Class 2, n=40) groups, achieving an overall accuracy of 94.5%. Key metrics highlight its 
robustness: sensitivity (90%)—calculated as TP / (TP + FN) = 36 / (36 + 4)—reflects its ability 
to correctly identify 90% of late-stage patients, critical for timely interventions; specificity 
(96%)—computed as TN / (TN + FP) = 120 / (120 + 5)—indicates a 96% success rate in 
identifying early-stage cases, minimizing unnecessary treatments; and precision (87.8%)—
derived from TP / (TP + FP) = 36 / (36 + 5)—shows that 87.8% of predicted late-stage 
classifications are accurate. Additionally, the negative predictive value (NPV) of 96.8%—TN / 
(TN + FN) = 120 / (120 + 4)—underscores its reliability in ruling out advanced disease, while 
the F1-score (88.9%)—calculated as 2 × (Precision × Sensitivity) / (Precision + Sensitivity) = 2 
× (0.878 × 0.90) / (0.878 + 0.90)—balances precision and recall effectively, affirming the 
model’s strength despite the dataset’s imbalance. 

Compared to standalone models like Cox Regression (accuracy: 80.6%), Logistic Regression 
(67.88%), and SVM (81.8%), the hybrid model’s superior performance stems from integrating 
Cox Regression’s statistical rigor with SVM’s ability to handle complex, non-linear 
relationships. The misclassification rate, computed as (FP + FN) / Total = (5 + 4) / 165 = 5.45%, 
is notably low, reinforcing its precision. These metrics collectively position the Cox-SVM model 
as a powerful tool for clinical decision-making, excelling in both identifying high-risk patients 
and confirming low-risk cases. 

3.4.1 Classification of observations in the groups 

In an analysis of patient data, observations were divided into two groups: Group 1, consisting of 
patients in an early stage of the disease with longer survival expectations, and Group 2, 
consisting of patients in a late stage of the disease with shorter survival expectations. Five 
misclassified observations were identified, where they belonged to Group 1 (early stage) but 
were classified into Group 2 (late stage). This result is consistent with what was found through 
classification table number 13, The observations were as follows: 

Value (y) Observation Value (y) Observation 

0.05231 102 0.07845 13 

0.03670 144 0.04451 19 

  0.01287 87 
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As for the observations belonging to Group 2 that were incorrectly classified into Group 1, there 
were 4 such cases. This also aligns with classification table 17. The observations are as follows: 
 

Value (y) Observation Value (y) Observation 

-0.06581 91 -0.07854 36 

-0.05891 151 -0.02354 76 

 

It is necessary to estimate the hyperplane equation, which is 𝑦 = 𝑊T𝑋 + 𝑏, and consequently 
obtain estimates for the weight vector (W) and the bias term (b), as shown in the following table. 

Table 15: the weight vector (W) and the bias term (b) 

b X13 X10 X7 X5 X3 X1  

2.2157 1.97852 0.8790 2.7823 2.1135 1.0325 3.1570 𝑾 𝒊 

 

The weights of Table 15 of the Cox-SVM hybrid model are valuable in understanding how 
individually they work towards classifying the lung cancer patients into early- and late-disease-
stage groups. Smoking (X1) with a maximum weight of 3.1570 is discovered to be the most 
predictive variable, underpinning the established status it attains as one of the top risk factors 
responsible for lung cancer incidence and deaths. Following closely, Treatment Methods (X7) 
with a weight of 2.7823 determines the significant influence of treatment modalities on survival 
outcomes, in line with clinical experience that treatment effectiveness is cancer type- and stage-
dependent. Age (X5) and Disease Stage (X13) with weights of 2.1135 and 1.97852 respectively 
reinforce the importance of patient age and disease progression, in line with the expectation that 
both rising age and advanced stage would be linked with poorer prognosis. These heavy weights 
together demonstrate the model's power to rank clinically significant factors within its 
classification. 

By comparison, Occupation (X3) and COVID-19 Infection (X10), with weights of 1.0325 and 
0.8790, respectively, have comparatively weaker contributions to the model. The modest weight 
for Occupation is consistent with a secondary role, perhaps through environmental exposures or 
socioeconomic status, but one whose effect is eclipsed by more proximal clinical factors. In the 
same manner, the lowest weight given to COVID-19 Infection suggests a smaller contribution to 
classification, either because its impact is overshadowed by other predictors such as age or 
disease stage, or there is not enough data to establish its complete impact. The bias term (b) 
2.2157 positions the hyperplane for optimal class separation according to data distribution. This 
weighting plan illustrates the usefulness of the hybrid model in achieving a balance between the 
statistical rigor of Cox regression and SVM's ability to model complex, non-linear relationships, 
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providing an efficient paradigm for survival analysis of lung cancer. Therefore, new observations 
are marked as follows: 

Table 16: Classification of New Lung Cancer Patients Using the Cox-SVM Hybrid Model 

Predict X13 X10 X7 X5 X3 X1 Observation 

Class 2 3 1 4 80 2 1 166 

Class 1 1 2 1 40 1 2 167 

Class 2 2 1 3 67 3 1 168 

 

Table 16 demonstrates the classification of three new observations (166, 167, 168) using the 
Cox-SVM hybrid model, based on variables Smoking (X1), Occupation (X3), Age (X5), 
Treatment Methods (X7), COVID-19 Infection (X10), and Disease Stage (X13), employing the 
equation(y=wTxi+b) with weights from Table 18 (b = 2.2157); patient 166 (80 years, smoker, 
stage III) is classified as Class 2 (late-stage) due to high-risk factors, patient 167 (40 years, non-
smoker, stage I) as Class 1 (early-stage) for better survival prospects, and patient 168 (67 years, 
smoker, stage II) as Class 2 due to smoking and COVID-19 impact, highlighting the model’s 
precision (90% sensitivity, 95.83% specificity) in distinguishing stages to enhance clinical 
decision-making. 

3.5 Hybrid Model (logistic-SVM) 

The hybrid model (Logistic-SVM) was constructed by incorporating all independent variables 
affecting the survival time of lung cancer patients, totaling (13) variables, using the Kaplan-
Meier method. The variables of family genetic history (x2), gender (x4), marital status (x8), 
degree of kinship between parents (x9), chronic diseases (x11), and place of residence (x12) were 
excluded. Seven variables were retained: smoking (x1), occupation (x3), age (x5), exposure to 
radiation therapy (x6), treatment methods (x7), COVID-19 infection (x10), and disease stage (x13). 
These variables were then entered into a logistic regression model, which excluded exposure to 
radiation therapy (x6) and COVID-19 infection (x10), retaining the remaining five variables due 
to their statistical significance. These variables were subsequently fed into a Support Vector 
Machine (SVM) using the Radial Basis Function (RBF) kernel, with an error margin of e=0.1 
and a margin size of c=1. The classification results based on the hybrid model are as follows: 

Table 17: Classification Results Using Hybrid Model (logistic-SVM) 

Predicted Class 2 Predicted Class 1 Group Size Actually 

9 116 125 Class 1 

34 6 40 Class 2 
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The Logistic-SVM hybrid model, as presented in Table 17, demonstrates strong performance in 
classifying lung cancer patients into early-stage (Class 1) and late-stage (Class 2) groups, 
achieving an overall accuracy of 90.91%. This was calculated using the formula (TP + TN) / 
Total, where TP (true positives) = 34 (correctly classified Class 2 patients), TN (true negatives) = 
116 (correctly classified Class 1 patients), and Total = 165, resulting in 150 / 165 ≈ 0.9091. 
Sensitivity, measuring the model’s ability to detect Class 2, reached 85% via TP / (TP + FN) = 
34 / (34 + 6), while specificity, assessing Class 1 accuracy, hit 92.8% through TN / (TN + FP) = 
116 / (116 + 9). These metrics highlight the model’s capacity to identify critical cases while 
minimizing errors, supported by a low misclassification rate of 9.09%, derived from (FP + FN) / 
Total = (9 + 6) / 165. 

Additionally, the model boasts a high negative predictive value (95.08%), computed as TN / (TN 
+ FN) = 116 / (116 + 6), indicating its reliability in ruling out late-stage disease. Precision for 
Class 2, reflecting the correctness of positive predictions, was 79.07% via TP / (TP + FP) = 34 / 
(34 + 9), while the F1-score for Class 2, balancing precision and sensitivity, reached 81.95% 
using 2 × (Precision × Sensitivity) / (Precision + Sensitivity) = 2 × (0.7907 × 0.85) / (0.7907 + 
0.85). The macro-average F1-score (87.94%), calculated as the average of F1 for both classes 
(F1_Class1 = 0.9393 and F1_Class2 = 0.8195), confirms balanced performance. 

The number of support vectors in the first group reached 18 vectors, while the number of support 
vectors in the second group was 11, resulting in a total of 29 support vectors for both groups 
combined. 

3.5.1 Classification of observations in the groups 

In patient data analysis, observations were categorized into two groups: Group 1, patients with an 
early stage of the disease and with greater survival expectations, and Group 2, patients with a late 
stage of the disease and with lesser survival expectations. Nine observation misclassifications 
were found, in which they were categorized under Group 1 (early stage) but classed as Group 2 
(late stage). This outcome is the same as what was obtained via classification table number 20, 
The observations were as follows: 

Value (y) Observation Value (y) Observation 

0.02504 131 0.04578 17 

0.07635 139 0.07856 68 

0.08751 147 0.01239 91 

0.08532 159 0.03879 102 

  0.09634 106 
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As for the observations belonging to Group 2 that were incorrectly classified into Group 1, there 
were 6 such cases. This also aligns with classification table 17. The observations are as follows: 

Value (y) Observation Value (y) Observation 

-0.03772 107 -0.07635 43 

-0.75201 145 -0.01996 70 

-0.04361 161 -0.05642 95 
 

It is necessary to estimate the hyperplane equation, which is 𝑦 = 𝑊T𝑋 + 𝑏, and consequently 
obtain estimates for the weight vector (W) and the bias term (b), as shown in the following table. 

Table 18: the weight vector (W) and the bias term (b) 

b X13 X7 X5 X3 X1  

2.2927 1.2715 1.9624 0.8567 2.7614 3.5601 𝑾 𝒊 

 

Table 18 shows that the Logistic-SVM hybrid model ranks Smoking (X1) and Occupation (X3) as 
its top predictors with respective weights of 3.5601 and 2.7614 in contributing to its 
classification accuracy being high (90.91%). Treatment Methods (X7), Disease Stage (X13), and 
Age (X5) are secondary factors, with a range of 0.8567 to 1.9624 for their respective weights, 
while the bias term (2.2927) moves the decision boundary. Its efficiency is indicated by the 
model's dependence on 29 support vectors, whereas the low weighting of Disease Stage and 
omission of variables such as X6 and X10 indicate the potential for improvement. Statistically, 
this weighting scheme confirms the high performance of the model while indicating the 
possibility of additional improvement, i.e., re-establishing variable selection or kernel parameter 
optimization, to maximize its predictive value for lung cancer survival analysis. Thus, new 
observations are classified as follows: 

Table 19: Classification of New Lung Cancer Patients Using the logistic-SVM Hybrid Model 

Predict X13 X7 X5 X3 X1 Observation 

Class 2 3 3 80 3 1 166 

Class 2 4 2 70 2 1 167 

Class 2 1 1 50 1 2 168 

Class 2 2 1 45 2 2 169 
 

The results show that all new observations were classified as Class 2, which may indicate a 
tendency of the model to predict late-stage disease, possibly due to the high weights assigned to 
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Smoking and Occupation or the selected variable values that tend to increase yi. To enhance the 
model, reconsidering the exclusion of variables like X6 (Radiation Therapy) and X10 (COVID-19 
Infection) or adjusting the RBF kernel parameters could reduce potential over-sensitivity to 
certain variables. Overall, the model delivers strong performance (90.91% accuracy), but these 
findings underscore the need for further testing on diverse datasets to ensure balanced 
classification between the two classes. 

3.6 Comparison Between Individual and Hybrid Models 

Survival analysis in lung cancer patients involves measurement of time-to-event outcomes, 
disease staging classification, and prediction of prognosis, using both individual and hybrid 
statistical models. Individual models like Cox Regression, Logistic Regression, and Support 
Vector Machines (SVM) offer different strengths—statistical rigor, ease of use, and non-linear 
flexibility, respectively—but are at a disadvantage because they cannot cope with complex, 
heterogeneous data. Hybrid methods such as Cox-SVM and Logistic-SVM integrate these 
methods to enhance accuracy and resistance by merging the traditional survival analysis with 
machine learning capability. Comparison in this case relies on performance in respect to several 
measures to determine their efficacy in clinical use. 

Table 20: Comparison Between Individual and Hybrid Models 

Logistic-
SVM 
Hybrid 
 

Cox-SVM 
Hybrid 

Support 
Vector 
Machine 
(SVM) 

Logistic 
Regression 

Cox 
Regression 

Metric/Indicator 

90.91% 94.5% 81.8% 67.88% 80.6% 
Overall Classification 
Accuracy 

85% 90% 80% 65.57% 75% 
Sensitivity  
(TruePositiveRate) 

92.8% 96% 82.4% 69.23% 85.88% 
Specificity  
(True Negative Rate) 

79.07% 87.8% 59.3% 55.56% N/A 
Positive Predictive 
Value (Precision) 

95.08% 96.8% N/A N/A N/A 
Negative Predictive 
Value (NPV) 

81.95% 88.9% 68.1% 60.17% N/A 
F1-Score (Harmonic 
Mean of Precision & 
Recall) 

9.09% 5.45% 18.2% N/A 19.39% Misclassification Rate 

N/A N/A N/A 54.18% 61.4% 
R-squared (Variance 
Explained) 
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Table 20 shows the Cox-SVM hybrid model as the outright winner in lung cancer patient 
classification with an overall accuracy of 94.5%, sensitivity of 90%, specificity of 96%, and F1-
score of 88.9%, with a misclassification rate of just 5.45%. This beats single models—Cox 
Regression (80.6% accurate, 61.4% R²), Logistic Regression (67.88% accurate, 54.18% R²), and 
SVM (81.8% accurate)—and the Logistic-SVM hybrid model (90.91% accurate, 85% sensitivity, 
92.8% specificity) by emphasizing the statistical synergy of combining Cox's hazard-based 
understanding with SVM's ability to perform non-linear classification. Its high accuracy (87.8%) 
and negative predictive value (96.8%) emphasize its application in the diagnosis of advanced 
disease and ruling out advanced disease confidently, making it highly valuable in clinical 
practice. 

Conversely, Table 20 exposes weaknesses in standalone models: Logistic Regression’s 
sensitivity (65.57%) and precision (55.56%) falter due to its binary framework, while SVM’s 
precision (59.3%) and misclassification rate (18.2%) indicate challenges with class imbalance 
(125 early-stage vs. 40 late-stage). Cox Regression, though explaining 61.4% of survival 
variance, lacks hybrid-level classification precision. The Logistic-SVM hybrid, with an F1-score 
of 81.95% and a 9.09% misclassification rate, performs admirably but trails Cox-SVM, possibly 
due to its reduced predictor set (five vs. six). These findings advocate for hybrid models in 
complex survival analysis, though cross-validation and broader dataset testing would enhance 
confidence in their generalizability. 

4. Discussion 

The comparative study of individual and hybrid survival models for lung cancer patients 
highlights the potency of revolutionizing traditional statistical approaches with machine learning 
models. The Cox-SVM hybrid model was the best, with a classification accuracy of 94.5%, 
sensitivity of 90%, and specificity of 96%, much better compared to isolated models such as Cox 
Regression (80.6%), Logistic Regression (67.88%), and SVM (81.8%). This model's superiority 
will be because of its capacity to take advantage of Cox Regression's hazard-based statistical 
paradigm on variable selection with SVM's versatility in modeling any type of very complex, not 
linear relationship capable of overcoming otherwise inherent constraints such as the proportional 
hazards assumption in the Cox models and linear constraints imposed on Logistic Regression. 
The model's high negative predictive value (96.8%) and low misclassification rate (5.45%) also 
emphasize its clinical usefulness in identifying early-stage patients correctly, minimizing 
unnecessary interventions, and marking late-stage cases for timely escalation of treatment. 

The Logistic-SVM hybrid, though strong with a 90.91% accuracy, came in second behind Cox-
SVM, most probably because it drew on fewer predictors (five vs. six) and did not include 
variables such as COVID-19 infection (X10) that were highly influential within the Cox-SVM 
model. This indicates that the selection of variables and model formation significantly affects 
performance, with Cox-SVM benefiting from a more extensive, statistically proven predictor 
base. Single-model approaches, although less complex, showed trade-offs: Cox Regression was 
very good at explaining variance (61.4% R²) but poor in classification accuracy, whereas SVM 
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performed poorly in precision (59.3%) due to class imbalance. These results are consistent with 
previous research, e.g., Xiao et al. (2022), which reported machine learning's advantage in 
discriminative capacity, and Cuthbert et al. (2022), which identified limited additional value in 
sophisticated methods unless combined thoughtfully, as done here. 

Clinically, the Cox-SVM model's weighting on smoking (weight: 3.1570), treatment patterns 
(2.7823), and disease stage (1.97852) are evidence-based risk factors, which make it more 
interpretable and useful. However, the lower weighting of COVID-19 infection (0.8790) in Cox-
SVM and exclusion in Logistic-SVM warrant further study, given that it can be a confounding 
variable for lung cancer prognosis, especially post-2020. More generally, these results validate 
hybrid approaches to survival analysis, offering the best possible balance of predictive ability 
and practical application in personalized medicine. 

5. Limitations 

The study involved 165 lung cancer patients from two centers in Egypt (2020–2024), with a 
sample comprising 125 early-stage and 40 late-stage cases. It utilized hybrid models, such as 
SVM with RBF kernel tuning, Kaplan-Meier and backward elimination methods for variable 
selection, reflecting a rigorous statistical approach. However, future studies are needed to 
strengthen the findings and expand their applicability. 

6. Conclusion 

This study demonstrates that hybrid models, and more precisely the Cox-SVM model, are a 
significant enhancement in survival analysis of lung cancer patients with greater classification 
accuracy (94.5%), sensitivity (90%), and specificity (96%) compared to single models like Cox 
Regression (80.6%), Logistic Regression (67.88%), and SVM (81.8%). By pairing the statistical 
strengths of traditional survival methods with the flexibility of machine learning, these hybrids 
effectively capture complex, non-linear relationships within survival data to enhance predictive 
accuracy and clinical decision-making. Both the Cox-SVM model's emphasis on smoking, 
treatment types, and disease stage adhering to traditional prognostic variables and its low 
misclassification rate (5.45%) reinforce its clinical viability and reliability. 

 

 

 

 

 

 

 

 



Abdelreheem Awad Bassuny 

 

 
 

373 

Table 21: Improvement Percentages of Hybrid Models Compared to Individual Models 

SVM Logistic Regression Cox 
Regression 

Metric/Individual Model 

   Overall Classification Accuracy 

15.53% 39.23% 17.25% Cox-SVM(94.5%) 

11.14% 33.95% 12.79% Logistic-SVM(90.91%) 

   Sensitivity (True Positive Rate( 

12.5% 37.36% 20% Cox-SVM(90%) 

6.25% 29.66% 13.33% Logistic-SVM(85%) 

   Specificity (True Negative Rate( 

16.5% 38.53% 11.7% Cox-SVM(96%) 

12.62% 34.06% 8.02% Logistic-SVM(92.8%) 

   Misclassification Rate 

-70.05% Not Available -71.88% Cox-SVM(5.45%) 

-50.05% Not Available -53.12% Logistic-SVM(9.09%) 

 

Table 21 highlights the substantial improvements offered by hybrid models over individual 
models in lung cancer survival analysis, with Cox-SVM demonstrating the highest gains—up to 
39.23% in classification accuracy over Logistic Regression, 20.00% in sensitivity over Cox 
Regression, and a 71.88% reduction in misclassification rate compared to Cox Regression—
underscoring its superior integration of statistical rigor and machine learning flexibility, while 
Logistic-SVM also shows notable enhancements, such as a 34.06% increase in specificity over 
Logistic Regression, though it lags slightly behind Cox-SVM due to its more limited predictor 
set. 

7. Recommendations for Future Research 

 Expand and Diversify the Sample: Increase the number of participants and diversify 
samples geographically and demographically to enhance the generalizability of hybrid 
models and reduce bias. 

 Incorporate Variables and Optimize SVM: Include additional biological and clinical 
variables and optimize SVM parameters to improve predictive accuracy and 
computational efficiency. 

 Develop Advanced Hybrid Models: Integrate deep learning with survival analysis to 
capture complex features and advance precision medicine. 
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 المستخلص

الإحʸائॽة   الʱقॽʻات   ʧʽب تʳʺع  والʱي  الॽʴاة،   ʙʽق على  الॼقاء  لʴʱلʽل  الهʻʽʳة  الʻʺاذج  أداء  مقارنة  الʙراسة  تʻʱاول 

الʙراسة    ʗئة. شʺلʛال الॼقاء لȐʙ مʛضى سʡʛان  بʱʻائج   ʕʰʻʱلل الآلة،   ʦॽة وتعلǽʙʽقلʱا    165الʢʻʡ ʙمعه ʧا م ً́ Ȅʛم

عامي    ʧʽب للʙʸر  الॽʷخ   ʛؗف ومʷʱʶفى  الفʛدǽة  2024و  2020للأورام  الʻʺاذج  مقارنة   ʗʺت  ʘʽح انʙʴار    - ، 

) الʙاعʺة  الʺʳʱهات  وآلات  اللʨجʱʶي،  الانʙʴار   ،ʝ ʨؗكSVM  (-  ʝ ʨؗؗ هʺا   ʧʽʻʽʳه  ʧʽذجʨʺن   SVM-مع 

. تʦ تʙʴيʙ الʺʕشʛات عالॽة الʺʵاʛʡ مʲل الʙʱخʧʽ، الʺهʻة، العʺʛ، أنʨاع العلاج، الإصاǼة Ǽفʛʽوس  SVM-ولʨجʱʶي

مايʛʽ لاخॽʱار الʶʺات. أʣهʛت الʱʻائج أن الʨʺʻذج  -كʨرونا، ومʛحلة الʺʛض، وتʦ تॽʺʸʺها Ǽاسʙʵʱام تʴلʽل ؗابلان

ʝ ʨؗؗ ʧʽʳاله-SVM    ʗبلغ ʅॽʻʸقة تʙاذج بʺʻع الॽʺج ʧʽأفʹل أداء ب Șة  94.5حقॽاسʶة  90%، وحॽɺʨون ،%

96  ʅॽʻʸʱال في  خʢأ  ومعʙل  لʨجʱʶي%5.45،   ʧʽʳاله الʨʺʻذج  تॼعه   .%-SVM    قةʙاذج  90.91بʺʻال  ʦث  ،%

  :ʝ ʨؗة (كǽدʛي:  80.6الفʱʶجʨ67.88%، ل  ،%SVM: 81.8%  ذجʨʺإلى دمج ن الهʻʽʳة  الʻʺاذج  أداء   Ȑʜعǽُ  .(

مع قʙرة    ʛʡاʵʺال القائʦ على   ʝ ʨؗكSVM    ةॽʺة وأهȄʕʰʻدقة ت ʛفʨمʺا ي الॽʢʵة،   ʛʽعامل مع العلاقات غʱال على 

  ʖʽائج إلى أن الأسالʱʻال ʛʽʷات، تʛʽغʱʺال ʠعǼ عادॼʱواس ʛʽغʸة الʻʽالع ʦʳد حʨʽق ʧم ʦغʛة أفʹل. على الȄʛȄʛس

  ʛʰانات أكॽام بʙʵʱاسǼ اذجʺʻه الʚه ʧم Șقʴʱال ʖʳǽ .يʸʵʷال ʖʢة في الʺॽʀ ل أداةʲʺقاء تॼال الهʻʽʳة في تʴلʽل 

  وأكʛʲ تʨʻعًا وعʨامل تȄʕʰʻة أخȐʛ في الأʴǼاث الʺʱʶقʰلॽة. 

  انʙʴار ʝؗʨؗ. ؛مايʛʽ، تعلʦॽ الآلة -ؗابلان ؛ الʻʺاذج الهʻʽʳة ؛: تʴلʽل الॼقاءالؒلʸات الʸفʯاحॻة 

 


