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Abstract:  
     Many natural events with an S-shaped sigmoidal curve can be well described using sigmoid 
growth models. Sigmoid growth models are considered one of the most important and most widely 
used non-linear models in describing the most natural phenomena that have a sigmoidal growth 
curve in several disciplines such as the physical, chemical, biological, and social sciences.  The 
purpose of the article is to suggested two new sigmoid growth models using two different 
techniques based on the Gompertz Exponential ( GoE ) distribution and comparison between them. 
The parameters of the suggested models are estimated using the maximum likelihood estimation 
technique. Through a Monte Carlo simulation and application utilizing Egypt's external debt data, 
the effectiveness of the newly presented models is examined and contrasted with some existing 
sigmoid growth such as Gompertz, and exponential models to explain the growth. Results showed 
that the recently suggested Transmuted Gompertz Exponential sigmoid growth model, and 
Gompertz Exponential sigmoid growth model are better than to the other models. 
 

Keywords: External Debt; Sigmoid growth model; non-linear regression model; Gompertz 
model, Exponential model; Gompertz Exponential distribution; Maximum likelihood. 

  :ʳʝلʯʴʸال
الʻʽʶي على شȞل حʛف     الʺʻʴʻى  ذات  الॽɻॽʰʢة  العʙيʙ مʧ الأحʙاث  الʧȞʺǽ S  ʨʺʻ وصف  نʺاذج  Ǽاسʙʵʱام   ʙʽج ȞʷǼل 

الʻʽʶي. تعʛʰʱ نʺاذج الʨʺʻ الʻʽʶي واحʙة مʧ أهʦ الʻʺاذج غʛʽ الॽʢʵة وأكʛʲها اسʙʵʱامًا في وصف العʙيʙ مʧ الʨʤاهʛ الॽɻॽʰʢة 
الغʛض مʧ هʚه   لعʙيʙ مʧ الʸʸʵʱات مʲل العلʨم الفȄʜʽائॽة والॽʺॽؔائॽة والʨʽʰلʨجॽة والاجʱʺاॽɺة.الʱي لها مʻʴʻى نʺʨ سʻʽي في ا

 (GoE) الʺقالة هʨ إقʛʱاح نʺʨذجʧʽ جʙيʙيʧ للʨʺʻ الʻʽʶي Ǽإسʙʵʱام Ȅʛʡقʧʽʱ مʱʵلفʧʽʱ تعʙʺʱان على تʨزȄع غʨمʛʽʰتʜ الأسي
ʱإسǼ حةʛʱالʺق الʻʺاذج  بʻʽهʦ. يʦʱ تقʙيʛ معلʺات  الأعʦʤ. مʧ خلال مʴاكاة مʨنʗ ؗارلʨ  والʺقارنه  ʙʵام Ȅʛʡقة تقʙيʛ الإمȞان 

Șʽʰʢʱي  والʻʽʶال ʨʺʻنʺاذج ال ʠعॼها بʱيً̡ا ومقارنʙمة حʙاذج الʺقʺʻة الॽفعال ʟʴف ʦʱي ، ʛʸʺارجى لʵال ʧيʙانات الॽعلى ب
الʺقʛʱحه، الʻʺاذج  أن  الʱʻائج  أʣهʛت   .ʨʺʻال  ʛʽʶفʱل  ʥالأسي وذل ،ʜتʛʽʰمʨل غʲة مॽȞॽالؔلاس   ʜتʛʽʰمʨى غʻʽʶال  ʨʺʻال نʺʨذج 

  .أفʹل مʧ الʻʺاذج الأخȐʛ   الʺʨʴل ،  نʺʨذج الʨʺʻ الʻʽʶى غʨمʛʽʰتʜ الأسي  الأسي

  ؛ تʨزȄع الأسي  ؛تʨزȄع غʨمʛʽʰتʜ    ؛الانʙʴار الغʛʽ خʢى     نʺʨج  ؛الʙيʧ الʵارجي، نʺʨذج الʨʺʻ الʻʽʶي  الؒلʸات الʸفʯاحॻة:

 .الإمȞان الأعʦʤ  ؛تʨزȄع غʨمʛʽʰتʜ الأسي
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1 Introduction 
 

    Non-linear regression models are frequently used to examine the influence of explanatory 
variables on a response variable across various fields, including physical, chemical, biological, 
and social sciences. The main reason for selecting a non-linear model often stems from existing 
knowledge that a specific process follows a known non-linear pattern. In such instances, the 
parameters can have significant and relevant connotations. Additionally, a secondary reason for 
opting for a non-linear model is the quest for simplicity; a well-chosen non-linear model can need 
much less parameters than multinomial model when analyzing the same dataset. There are several 
types of non-linear models, including the exponential decay model, segmented polynomial models, 
a two-term exponential model, inverse polynomial model, toxicity studies model, probit and logit 
models, as well as growth models. 
     One of the most important non-linear models is growth model; it has evolved over an extended 
period of time. As time passed, the primary emphasis switched from developing families of curves 
to depicting trends or typical behaviors. Sigmoid growth models are frequently used to represent 
plant weight, height, and index of leaf area, time dependent seed germination. More specifically, 
sigmoid functions are particularly interesting in abstract fields, the sigmoid function is relevant to 
the differential equations, formulas based on cumulative distribution, transmuted function, family 
of single sigmoid functions, and Hausdorff approximations. Sigmoid functions have a broad range 
of applications in physics, engineering, life and social sciences, including population dynamics, 
finance, signal and image processing, artificial neural networks, antenna feeding techniques, and 
insurance. Sigmoid growth models are non-linear regression models that have been used in a 
variety of domains with numerous notations and parameterizations. Some researches introduced 
and analysis non-linear regression models such as: [ Ratkowsky ( 1983 ),  Fekedulegn et al. ( 1999 
), Ritz and Streibig ( 2008 ), Archontoulis and Miguez ( 2015 )].  
 

    Many researches have used, suggested growth models and analyzed various growth phenomena. 
For example, Carrillo and González ( 2002 ) introduced a new approach to modelling sigmoidal 
curves. Müller et al. ( 2006 ) used of a new sigmoid growth equation in growth models. Szabelska 
et al. ( 2010 ) presented five growth models: Exponential, Weibull , Logistic, Log-logistic and 
Gompertz. Goshu and Koya ( 2013 ) introduced logistic, generalized logistic, Richards, Von 
Bertalanffy, Brody, Gompertz,  Weibull, generalized Weibull, and Monomolecular models. 
Mahanta and Borah ( 2014 ) discussed a few specific characteristics of three Weibull sigmoid 
growth models from a forestry perspective, while Panik ( 2014 ) introduced some of the more 
common parametric growth models such as Logistic, Gompertz, Weibull, Negative Exponential, 
and Von Bertalanffy. Sedmak and Scheer ( 2015 ) presented the features and short term forecast 
accuracy of the mathematical model of sigmoid time-determinate growth. Kim et al. ( 2017 ) 
suggested a growth model that includes the impact of water temperature on the development in the 
von Bertalanffy growth model. Fernandes et al. ( 2017 ) used the Logistic and Gompertz growth 
models for analyzing the growth pattern of coffee berries, while Souza et al. ( 2017 ) studied the 
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growth models: Gompertz, Logistic, Brody, and von Bertalanffy models in analyzing the cross 
section data for the weight of living things  
of Mangalarga Marchador horses, also, Tjørve and Tjørve ( 2017) used of Gompertz models in 
growth analyses, introduced new Gompertz model approach. Amarti ( 2018 ) introduced the 
logistic growth model with the Allee effect for describing the rise of population numbers, Ghaderi-
Zefrehel et al. ( 2018 ) studied some general non-linear growth models such as Gompertz, von 
Bertalanffy, Logistic, and Brody coupled with multilevel modelling to explore the typical 
development of Iranian Lori Bakhtiari sheep, while Ribeiro et al. ( 2018 ) explained the Gompertz 
and Logistic models were used to measure the develop and growth of Asian pear fruit over time 
based on  diameter, length, and fresh weight. Cao et al.   ( 2019 ) presented a new sigmoid growth 
model to describe the development of plants and animals when the growth rate curve is 
asymmetric, Ukalska and Jastrzebowski ( 2019 ) studied the dynamics of the epicotyls emergence 
of oak using the Logistic, Gompertz, and Richards models, also, Zardin et al. ( 2019 ) studied the 
growth curves by Gompertz non-linear regression model. Shen ( 2020 ) examines the application 
of the Logistic sigmoid growth model of COVID-19 spread in China and its worldwide 
ramifications, Ademola and Sunday ( 2020 ) defined and investigated a novel continuous model 
known as the Gompertz Exponential distribution, the resulting densities and statistical properties 
were carefully calculated. Also, Jane et al. ( 2020 ) studied the growth curve of sugarcane varieties 
using non-linear models. Abd Al-Rahman et al.             ( 2022 ) analyzed confirmed COVID-19 
cases in Egypt through some new modelling sigmoidal growth curves. Al-Ghaish and Mohamed ( 
2023 ) investigated the factors influencing the sustainability of Egypt's external debt. Soto et al. ( 
2023 ) studied reflect impacts of some sigmoidal curves and dynamics of aquatic invasive species. 
Abul Nasr and Mahmoud ( 2024 ) studied the impact of some macroeconomic variables on Egypt's 
external debt over the period 1992 to 2022. 
    Some researchers found another technique to transform the distribution to sigmoid function, 
with focused computational, mathematical, modelling, and approximate challenges with the 
sigmoidal function and the Heaviside step function. The Hausdor approximation for the Heaviside 
step function using sigmoid functions is examined from a variety in computational and modelling 
perspectives. For example, Kyurkchiev and Markov ( 2015 ). suggested some sigmoid functions 
based on transmuted function transformation and using some approximation and modelling 
aspects. Anguelov and Markov ( 2016 ). introduced Hausdorff continuously interval formulas and 
approximations by Sigmoid Logistic Functions. Iliev, Kyurkchiev and Markov ( 2017 ) introduced 
Hausdorff approximation for the Heaviside step function by multiple sigmoid functions: log–
logistic, generalized logistic, and transmuted log–logistic functions. Kyurkchiev ( 2018 ) 
introduced new transmuted based on Gompertz function, also Kyurkchiev ( 2022 ) introduced a 
remark  on a Hypothesis piecewise Simplified  sigmoid growth function. 
    Some traditional growth models can be represented mathematically as follows: 

Gompertz model:           𝑦௜  =  𝑎 + ( 𝛽 −  𝑎 )  𝑒ି ௘( ೖ ( ೣ೔ ష ം ) )
 +  𝜀௜   ,                                               (1)   

Exponential model:       𝑦௜  =  𝑎 +  ( 𝛽 −  𝑎 ) 𝑒
ቀ ି 

ೣ೔
ഋ

 ቁ
 +  𝜀௜  ,                                                         (2)   
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Weibull model:               𝑦𝒊  =  𝑎  ൫ 1 −  𝑒ି( ௞ ௫೔ )೎
 ൯  +  𝜀௜ ,                                                          (3) 

where 𝑦௜  ;  𝑖 = 1 , … , 𝑛 is the response variable, 𝛾 is the point of  inflection, 𝑥௜  is the explanatory 
variable, 𝑎, 𝛽, 𝑘, and 𝑐 are parameters must be estimated which are defined as: 𝑎 is the response 
variable's maximum value in the data , 𝑎 > 0, 𝛽 is the minimum of the response variable's value 
in the data, 𝑘 is the parameter governing the rate at which the response variable approaches its 
potential maximum, 𝑘 > 0, 𝜇 is the scale parameter , and 𝑐 is the allometric constant, and 𝜀௜ is a 
random error term which assumes that it is explanatory and identically distributed (𝑖. 𝑖. 𝑑. ) with 
𝑁(0, 𝜎ଶ).  

    The study's purpose is to offer two new sigmoid growth models based on the Gompertz 
Exponential ( GoE ) distribution for accurately assessing diverse growth circumstances.  The 
suggested sigmoid growth models are called the Transmuted Gompertz Exponential and Gompertz 
Exponential. The paper is structured as follows: Section 2 provides some approaches 
transformation to sigmoid functions, the new suggested sigmoidal growth models, the Gompertz 
Exponential and Transmuted Gompertz Exponential are introduced in Section 3. Section 4 explains 
the process for estimating the parameters of some single sigmoid growth models using the 
maximum likelihood ( ML ) estimation approach. The simulation research appears in Section 5. 
An application utilizing Egypt's external debt from 2000 to 2022 is shown in Section 6. Some 
closing remarks are included in Section 7. 

2 Some approaches transformation to sigmoid functions 

    There are several approaches for transformation sigmoid functions, including: the formula based 
on the cumulative distribution function published by Seber and Wild ( 2003 ) and the transmuted 
sigmoid function introduced by Kyurkchiev and Markov ( 2015 ). To describe a sigmoid form, 
utilize the distribution function 𝐹( 𝑥; 𝜃 ) of a random variable that is continuous having a 
distribution with unimodal.  

2.1 The formula based on the distribution function  

     The distribution function 𝐹(𝑥; 𝜃) of exactly continuous random variable having a distribution 
with unimodal is used to characterise a sigmoidal shape. There are four formulas based on the 
cumulative distribution function, the generic equation for the sigmoid model using the distribution 
function is given by 

𝑦ଵ  =  𝛽 +  ( 𝑎 −  𝛽 ) 𝐹( 𝑘 ( 𝑥 −  𝛾 ) ;  𝜽 )  +  𝜀 ,                                                                               (4) 

where 𝑦ଵ is the response variable in the general formula of sigmoid model, 𝑥 is the explanatory 
variable, 𝛾 is the point of inflection, 𝑎 is the maximum value of the dependent variable in the data, 
𝑎 > 0, 𝛽 is the minimum of the response variable's value in the data, 𝑘 is as a scale parameter on 
𝑥 , 𝑘 > 0, 𝜽 is an unknown-parameter vector, and 𝜀 is the random error.  

     Also, when shifting the standard curve vertically at 𝛾 = 0 in (4), the special case of sigmoid 
model can be written as follows: 
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 𝑦ଶ  =  𝛽 +  ( 𝑎 −  𝛽 ) 𝐹( 𝑘 𝑥;  𝜽 )  +  𝜀,                                                                                           (5) 

where 𝑦ଶ is the response variable in the special case of sigmoid model when 𝛾 = 0 and 𝜀 is the 
random error. 

Another formula of sigmoid model as special case when 𝛽 = 0 in (4) as follows: 

𝑦ଷ  =  𝑎  𝐹( 𝑘 ( 𝑥 −  𝛾 ) ;   𝜽 )  +  𝜀 ,                                                                                                 (6) 

where 𝑦ଷ is the response variable in the special case of sigmoid model when 𝛽 = 0 and 𝜀 is the 
random error.  

Also, when 𝛾 =  0 in (6), the special case of sigmoid model can be written as follows: 

𝑦ସ  =  𝑎  𝐹( 𝑘 ( 𝑥 ) ;  𝜽 )  +  𝜀 ,                                                                                                        (7) 

where 𝑦ସ is the response variable in the special case of sigmoid model when 𝛽 =  0, 𝛾 =  0 and 
𝜀 is the random error.  

       Some sigmoid growth functions are constructed based on distribution functions such as: The 
Exponential, Logistic, Log-logistic, generalized logistic, Gompertz, Weibull, generalized Weibull, 
Von Bertalanffy, Brody, Richards, and Monomolecular models.  

2.2 Transmuted sigmoid function 

      An obvious way for describing a sigmoid function is to use the transmuted distribution. 
Transmuted distributions were introduced by Shaw and Buckley ( 2007 ). In accordance with the 
quadratic rank transmutation map ( QRTM ), a random variable 𝑋 is considered to have a 
transmuted distribution. The generic equation for the sigmoid model using transmuted sigmoid 
function transformation is given below: 

𝐺( 𝑥 )  =  ( 1 +  𝜆 ) 𝐹( 𝑥 )  −  𝜆 𝐹ଶ( 𝑥 )     ,                                                                                       (8) 

where 𝐹( 𝑥 ) : is the cdf pertaining to the base distribution, |𝜆|  ≤  1 , known as shape parameter. 

     Some sigmoid functions are constructed based on transmuted functions such as: the transmuted 
sigmoid Rayleigh function, transmuted sigmoid, log-logistic function, transmuted Gompertz 
function, through Hausdorff approximation. 

3 The new suggested sigmoidal growth models 

     In this section, suggest two new sigmoid growth models using two different techniques based 
on the Gompertz Exponential ( GoE ) distribution, these models are called the Gompertz 
Exponential and Transmuted Gompertz Exponential. The GoE distribution was originally 
described in the literature by Ademola and Sunday ( 2020 ), and it is derived from the Gompertz 
and exponential distributions, then, Bashir and Qureshi ( 2022 ) introduced an application used the 
GoE distribution. The GoE distribution will be used to generate several models of sigmoid growth 
using cumulative distribution functions. 

  



Volume 44, Issue 4. 2024,196-221                                The Scientific Journal of Business and Finance 

  202

The cumulative distribution function of the GoE distribution can be written as follows: 

𝐹( 𝑥 )  =  1 −  𝑒 
ೞ

𝝁
 [ଵ ି ௘ഋ ೝ ೣ ]

  , 𝑠, 𝜇, 𝑟 > 0,                                                                                       (9) 

where r is scale parameter and 𝑠, 𝜇 are shape parameters. 

3.1 The first suggested sigmoid growth model 

    From (7), the first suggested sigmoid growth model based on the distribution function is called 
the Gompertz Exponential ( GoE ) sigmoid growth model, denoted by 𝑦௜( GoE ) and is written in 
the next form: 

 𝑦௜( GoE ) =  𝑎 ቂ  1 −  𝑒 
ೞ

𝝁
 ൣଵ ି ௘ഋ ೝ ೖ ೣ೔൧

 ቃ  +  𝜀௜   , 𝜽 = (𝑎, 𝑠, 𝜇, 𝑘, 𝑟)்.                                

(10) 

3.2 The second suggested sigmoid growth model 

    From (8), the second suggested sigmoid growth model using transmuted sigmoid function is 
called the Transmuted Gompertz Exponential ( TGoE ) sigmoid growth model is denoted 
𝑦௜( TGoE ) and is written in the next form: 

𝑦௜( 𝑇𝐺𝑜𝐸 ) = 

 ( 1 + 𝜆 ) ቀ 1 − 𝑒 
ೞ

𝝁
 [ଵ ି ௘ഋ ೝ ೣ೔]

 ቁ  −  𝜆 ( 1 − 𝑒 
ೞ

𝝁
 [ଵ ି ௘ഋ ೝ ೣ೔  ]

 )ଶ   + 𝜀௜  , 𝜽 = (𝜆, 𝑠, 𝜇, 𝑟)்.        

(11)   
                                                                                                

4 Estimating the parameters of some sigmoid growth models used ML technique 
 

     In this section, the parameters of the suggested model are estimated using the maximum 
likelihood ( ML ) estimation technique. The ML approach in non-linear growth models were 
introduced by Carolin ( 1990 ), Malott ( 1990 ).  In statistics, among the most commonly used 
estimating techniques is the ML estimation technique, it is one of the most popular estimation 
techniques; the ML estimation technique estimates the parameters by solving a set of simultaneous 
equations. ML estimation would accomplish the estimates by using the variance and mean as 
parameters and identifying certain values that increase the likelihood of the observed outcomes. If 
the joint distribution of the 𝜀௜  in the non-linear, assuming that the model is known, the likelihood 
function is maximized to yield the maximum likelihood estimate of θ. Suppose the error term 

𝜀௜׳𝑠  are 𝑖. 𝑖. 𝑑. with density function 𝜎ିଵ𝑔(𝜀/𝜎), so that 𝑔 is the unit variance of the error 
distribution for standardized errors. Then the likelihood function is 

𝑓( 𝑦ூ|𝜽 , 𝜎ఌ
ଶ )  =  ∏ ቂ𝜎ఌ

ିଵ 𝑔 ቀ
௬಺ି௙(௫಺,𝜽)

ఙഄ
ቁቃ௡

ூୀଵ =  ∏ ቂ 𝑔 ቀ 
௫಺ ି ௙(௫಺,𝜽 )

ఙഄ
మ  ቁ ቃ௡

ூୀଵ ,                        (12) 

where: 𝑓( 𝑥ூ , 𝜽 ) is the sigmoid growth function. 
 

     In the following sections the ML estimation technique of some sigmoid growth models will be 
illustrated: 
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4.1 Maximum likelihood estimation of the Gompertz sigmoid growth model 
 

     For the Gompertz sigmoid growth model as in (1), suppose that 𝒚 =  ( 𝑦ଵ, … , 𝑦௡ )𝑻 be 𝑛 
explanatory random variables with pdf, 𝑓( 𝑦ூ|𝜽, 𝜎ఌ

ଶ ) based on a parameter with a vector value  

𝜽 and the error variance, 𝜎ఌ
ଶ. Also, the 𝜀௜׳𝑠 are assumed to be explanatory and 𝑖. 𝑖. 𝑑 with 𝑁( 0, 𝜎ଶ ), 

then the likelihood function is:  

  𝐿 =  𝑓( 𝒚|𝜽, 𝜎ఌ
ଶ )  =  (2 𝜋 𝜎ఌ

ଶ)ି௡/ଶ 𝑒𝑥𝑝 ቎ − 
ଵ

ଶ
 ∑ ቌ 

൬ ௬೔ ି ൤௔ ା (ఉି௔)  ௘ష ೐(ೖ ( ೣ೔ ష ം )
൨ ൰

మ

ఙഄ
మ  ቍ ௡

௜ୀଵ ቏. (13) 

And the logarithm of the likelihood function is 

   𝑙( 𝜽, 𝜎ఌ
ଶ;  𝒚 )  =  log( 𝐿 ) ∝  −

௡

ଶ
 log(𝜎ఌ

ଶ) −  
ଵ

ଶ
 ∑ ቌ 

൬ ௬೔ ି ൤௔ା(ఉି௔) ௘ష ೐( ೖ ( ೣ೔ ష ം ) )
 ൨  ൰

మ

ఙഄ
మ  ቍ௡

௜ୀଵ . (14) 

The ML estimator 𝜽෡ is produced by solving the next equation:   

డ௟൫𝜽,ఙഄ
మ; 𝒚൯

డ𝜽
ቚ

𝜽ୀ 𝜽෡
 =  0  ,   𝜽 = (𝑎, 𝛽, 𝑘, 𝛾)்  ,                                                                              (15) 

where: 

డ௟൫𝜽,ఙഄ
మ; 𝒚൯

డ௔
 =  

ଵ

ఙഄ
మ  ∑ ቎

ቂ 𝑦௜  −  ቂ𝑎 +  ( 𝛽 −  𝑎 )  𝑒ି ௘( ೖ ( ೣ೔ ష ം ) ) ቃ ቃ  

ቂ  1 +   𝑒ି ௘(ೖ( ೣ೔షം))
 ቃ

቏ ௡
௜ୀଵ   ,                                (16)  

డ௟൫𝜽,ఙഄ
మ; 𝒚൯

డఉ
 =  

ିଵ

ఙഄ
మ 

 ∑ ቌ
 ቂ𝑦௜  −  ቂ𝑎 +  ( 𝛽 −  𝑎 )  𝑒ି ௘( ೖ (  ೣ೔ ష ം ) )

 ቃ ቃ

 ቀ 𝑒ି ௘(ೖ( ೣ೔ ష ം))
 ቁ 

ቍ௡
௜ୀଵ ,                               (17) 

 

డ௟൫𝜽,ఙഄ
మ; 𝒚൯

డ௞
 =

(ఉି௔)

ఙഄ
మ  ∑ ቌ

൤𝑦௜ − ቂ𝑎 + (𝛽 − 𝑎) 𝑒ି ௘(ೖ( ೣ೔షം))
 ቃ൨

ቀ 𝑒ି ௘(ೖ( ೣ೔షം))
 ቁ 𝑒(௞( ௫೔ ି ఊ))( 𝑥௜ − 𝛾 ) 

ቍ௡
௜ୀଵ ,                                         (18) 

 

 
డ௟൫𝜽,ఙഄ

మ; 𝒚൯

డఊ
 =

ି( ఉି௔ ) ௞ 

ఙഄ
మ ∑ ቌ ቎

൤𝑦௜ − ቂ𝑎 + (𝛽 − 𝑎) 𝑒ି ௘(ೖ( ೣ೔షം))
 ቃ൨

 ቀ 𝑒ି ௘( ೖ (  ೣ೔ ష ം ) )
 ቁ  𝑒( ௞( ௫೔ ି ఊ ) ) 

቏ ቍ௡
௜ୀଵ ,                               (19) 

and  

డ௟൫𝜽,ఙഄ
మ; 𝒚൯

డఙഄ
మ  =  − 

௡

ଶ ఙഄ
మ  +  

ଵ

ଶ ఙഄ
ర  ∑ ቂ 𝑦௜  −  ቂ𝑎 +  ( 𝛽 −  𝑎 )  𝑒ି ௘( ೖ (  ೣ೔ ష ം ) )

 ቃ ቃ
ଶ

௡
௜ୀଵ .                   (20) 
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To obtain the ML estimators, simply sets (16) - (20) equal to zero. The resultant system of 
nonlinear equations can be numerically solved using the Nelder Mead maximization algorithm.  

4.2 Maximum likelihood estimation of the exponential sigmoid growth model 

      For the exponential sigmoid growth model as in (2), suppose that 𝒚 = ( 𝑦ଵ, … , 𝑦௡ )𝑻 be 𝑛 
explanatory random variables with pdf, 𝑓(𝑦ூ|𝜽, 𝜎ఌ

ଶ) depending on a vector valued parameter 𝜽 and 

the error variance, 𝜎ఌ
ଶ. Also, the 𝜀௜׳𝑠 are assumed to be explanatory and 𝑖. 𝑖. 𝑑 with 𝑁( 0, 𝜎ଶ ), then 

the likelihood function is:                             

𝐿 =  𝑓( 𝒚|𝜽, 𝜎ఌ
ଶ ) =  ( 2 𝜋 𝜎ఌ

ଶ )ି௡/ଶ  𝑒𝑥𝑝 ൦ − 
ଵ

ଶ
 ∑ ൮ 

ቆ ௬೔ ି(௔ ା ( ఉ ି ௔ ) ௘
ቀ ష 

ೣ೔
ഋ

 ቁ
 )ቇ

మ

ఙഄ
మ  ൲ ௡

௜ୀଵ ൪.                   

(21) 

The logarithm of the likelihood function expressed as 𝑙(𝜽, 𝜎ఌ
ଶ;  𝒚 ) and is given as follows: 

𝑙( 𝜽, 𝜎ఌ
ଶ;  𝒚 ) =  log( 𝐿 ) ∝  − 

௡

ଶ
 log( 𝜎ఌ

ଶ ) −  
ଵ

ଶ
 ∑ ൮ 

ቆ ௬೔ ି(௔ ା ( ఉ ି ௔ ) ௘
ቀ ష 

ೣ೔
ഋ

 ቁ
 ) ቇ

మ

ఙഄ
మ  ൲௡

௜ୀଵ . (22)             

Then, the ML estimator 𝜽෡ can be obtained by solving the next equation:   

డ௟൫𝜽,ఙഄ
మ; 𝒚൯

డ𝜽
ቚ

𝜽ୀ 𝜽෡
 =  0 ,   𝜽 = (𝑎, 𝛽, 𝜇)்  ,                                                                        (23) 

where: 

డ௟൫𝜽,ఙഄ
మ; 𝒚൯

డ௔
 =  

ଵ

ఙഄ
మ  ∑ ൬ ൬ 𝑦௜  − (𝑎 + ( 𝛽 −  𝑎 ) 𝑒

ቀ ି 
ೣ೔
ഋ

 ቁ
 ) ൰ ൤  1 − 𝑒

ቀି 
ೣ೔
ഋ

 ቁ
 ൨ ൰௡

௜ୀଵ ,         (24) 

డ௟൫𝜽,ఙഄ
మ; 𝒚൯

డఉ
 =  

ଵ

ఙഄ
మ  ∑ ൬ ൬ 𝑦௜  − (𝑎 + ( 𝛽 −  𝑎 ) 𝑒

ቀ ି 
ೣ೔
ഋ

 ቁ
 )൰  𝑒

ቀ ି 
ೣ೔
ഋ

 ቁ
 ൰ ௡

௜ୀଵ ,                       (25) 

డ௟൫𝜽,ఙഄ
మ; 𝒚൯

డఓ
 =  

(ఉି௔) 

ఓమ ఙഄ
మ  ∑ ൬ ൬ 𝑦௜  − (𝑎 + ( 𝛽 −  𝑎 ) 𝑒

ቀ ି 
ೣ೔
ഋ

 ቁ
 )൰  𝑒

ቀ ି 
ೣ೔
ഋ

 ቁ
 𝑥௜ ൰

௡
௜ୀଵ ,             (26) 

and  

డ௟൫𝜽,ఙഄ
మ; 𝒚൯

డఙഄ
మ  =  − 

௡

ଶఙഄ
మ 

 +  
ଵ

ଶఙഄ
ర  ∑ ൬ 𝑦௜  − (𝑎 + ( 𝛽 −  𝑎 ) 𝑒

ቀ ି 
ೣ೔
ഋ

 ቁ
 ) ൰

ଶ
௡
௜ୀଵ .                   (27) 

To obtain the ML estimators, simply sets (24) - (27) equal to zero. The resultant system of 
nonlinear equations can be numerically solved using the Nelder Mead maximization algorithm.  
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4.3 Maximum likelihood estimation of the Transmute Gompertz Exponential 
sigmoid growth model 

    For the first new suggested model of sigmoidal growth, the Transmuted Gompertz Exponential 

sigmoid growth model as in (11), suppose that the 𝜀௜׳𝑠 are 𝑖. 𝑖. 𝑑. 𝑁( 0, 𝜎ଶ ), then the likelihood 
function becomes: 

 
𝐿 =  𝑓(𝒚|𝜽, 𝜎ఌ

ଶ)  =

 (2𝜋𝜎ఌ
ଶ)ି

೙

మ  𝑒𝑥𝑝

⎣
⎢
⎢
⎡

−
ଵ

ଶ
∑

⎝

⎛ 
൭ ௬೔ ି ൥( ଵ ା ఒ ) ቆ ଵ ି௘ 

ೞ
𝝁

 ൣభ ష ೐ഋ ೝ ೣ೔൧
ቇିఒ ቆଵି௘ 

ೞ
𝝁

 ൣభ ష೐ഋ ೝ ೣ೔൧
ቇ

మ

൩ ൱

మ

ఙഄ
మ

⎠

⎞௡
௜ୀଵ

⎦
⎥
⎥
⎤

.(28) 

The probability function’s logarithm is represented by  𝑙(𝜽, 𝜎ఌ
ଶ;  𝒚) and is given as follows: 

𝑙(𝜽, 𝜎ఌ
ଶ;  𝒚)  = log( 𝐿 ) 

∝ −
௡

ଶ
log(𝜎ఌ

ଶ) −
ଵ

ଶ
 ∑

⎝

⎛ 
൭ ௬೔ ି ൥(ଵ ା ఒ) ቆଵ ି ௘ 

ೞ
𝝁

 ൣభ ష ೐ഋ ೝ ೣ೔  ൧
ቇ ି ఒ ቆଵ ି ௘ 

ೞ
𝝁

 ൣభ ష ೐ഋ ೝ ೣ೔൧
ቇ

మ

൩ ൱

మ

ఙഄ
మ  

⎠

⎞௡
௜ୀଵ .  (29)    

Let 𝑔்ீ௢ா( 𝑥௜ )  =   ൤( 1 +  𝜆 ) ൬ 1 −  𝑒 
ೞ

𝝁
 [ଵି௘ഋ ೝ ೣ೔]

 ൰  −  𝜆  ( 1 −  𝑒 
ೞ

𝝁
 [ଵ ି ௘ഋ ೝ ೣ೔]

 )ଶ ൨ 

Then, the ML estimator 𝜽෡ can be acquired by the solution of the subsequent equation.:   

డ௟൫𝜽,ఙഄ
మ; 𝒚൯

డ𝜽
ቚ

𝜽ୀ 𝜽෡
 =  0 ,   𝜽 = (𝜆, 𝑠, 𝜇, 𝑟)்   ,                                                                    (30) 

where: 

డ௟൫𝜽,ఙഄ
మ; 𝒚൯

డఒ
 =  

ଵ

ఙഄ
మ  ∑ ൮

 (𝑦௜  − [  𝑔்ீ௢ா( 𝑥௜ )] ) ൤𝑒 
ೞ

𝝁
 [ଵି௘ഋ ೝ ೣ೔]

 ൨

 ൤ 1 − 𝑒 
ೞ

𝝁
 [ଵି௘ഋ ೝ ೣ೔]

  ൨ 
൲௡

௜ୀଵ ,                              (31) 

 

 
డ௟൫𝜽,ఙഄ

మ; 𝒚൯

డ௦
 =

ିଵ

𝝁ఙഄ
మ  ∑

⎝

⎛

( 𝑦௜ − [ 𝑔்ீ௢ா( 𝑥௜  )] ) ൬ ൬𝑒 
ೞ

𝝁
[ଵି௘ഋೝ ೔]

൰ [1 − 𝑒ఓ௥௫೔]൰

ቆ(1 + 𝜆) + 2𝜆[1 − 𝑒 
ೞ

𝝁
[ଵି௘ഋೝ ೔]

]ቇ
⎠

⎞௡
௜ୀଵ ,         (32) 
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డ௟൫𝜽,ఙഄ

మ; 𝒚൯

డఓ
 =

௦

ఓఙഄ
మ ∑

⎝

⎛

(𝑦௜ − 𝑔்ீ௢ா(𝑥௜)) ൤൬𝑒 
ೞ

𝝁
 [ଵ ି ௘ഋ ೝ ೣ೔ ]

൰ ቀ− 
ଵ

𝝁
− 𝑟 𝑥 𝑒ఓ ௥ ௫೔ +

௘ഋ ೝ ೣ೔

𝝁
ቁ൨

. ቆ2 𝜆 ൤1 − 𝑒 
ೞ

𝝁
 [ଵ ି ௘ഋ ೝ ೣ೔]

൨ − (1 + 𝜆)ቇ
⎠

⎞௡
௜ୀଵ ,          

(33) 

 

డ௟൫𝜽,ఙഄ
మ; 𝒚൯

డ௥
 = 

௦ 

ఙഄ
మ  ∑ ൮

( 𝑦௜  − [  𝑔்ீ௢ா( 𝑥௜ )] ) ൤( 𝑥௜𝑒ఓ ௥ ௫೔ ) ൬𝑒 
ೞ

𝝁
 [ଵ ି ௘ഋ ೝ ೣ೔]

൰൨

൤(1 + 𝜆) − 2 𝜆 ൬ 1 − 𝑒 
ೞ

𝝁
 [ଵ ି ௘ഋ ೝ ೣ೔]

൰൨
൲௡

௜ୀଵ ,       (34) 

and  

డ௟൫𝜽,ఙഄ
మ; 𝒚൯

డఙഄ
మ  =  − 

௡

ଶ ఙഄ
మ  +  

ଵ

ଶ ఙഄ
ర  ∑  ( 𝑦௜  − [𝑔்ீ௢ா( 𝑥 )] )ଶ௡

௜ୀଵ .                                        (35) 

To obtain the ML estimators, simply sets (31) - (35) equal to zero. The resultant system of 
nonlinear equations can be numerically solved using the Nelder Mead maximization algorithm.  

4.4 Maximum likelihood estimation of the Gompertz Exponential sigmoid 
growth model 

    For the second new suggested model of sigmoidal growth, the GoE sigmoid growth model as in 

(10), suppose that the 𝜀௜׳𝑠 are 𝑖. 𝑖. 𝑑. 𝑁( 0, 𝜎ଶ ), then the likelihood function becomes: 

𝐿 =  𝑓( 𝒚|𝜽, 𝜎ఌ
ଶ) =  ( 2 𝜋 𝜎ఌ

ଶ )ି௡/ଶ 𝑒𝑥𝑝 ൦ − 
ଵ

ଶ
 ∑ ൮ 

ቆ ௬೔  ି ௔ ቈ  ଵ ି ௘ 
ೞ
𝝁

 ቂభ ష ೐𝝁 ೝ ೖ ೣ೔ቃ
቉ቇ

మ

ఙഄ
మ ൲௡

௜ୀଵ ൪. (36) 

The probability function’s logarithm is represented by 𝑙(𝜽, 𝜎ఌ
ଶ;  𝒚) and is given as follows: 

𝑙(𝜽, 𝜎ఌ
ଶ;  𝒚)  =  

log( 𝐿 ) ∝  − 
௡

ଶ
 log( 𝜎ఌ

ଶ ) −  
ଵ

ଶ
 ∑ ൮ 

ቆ ௬೔ ି ௔ ቈ  ଵି௘ 
ೞ
𝝁

 ቂభష೐𝝁 ೝ ೖ ೣ೔ ቃ
 ቉ ቇ

మ

ఙഄ
మ ൲௡

௜ୀଵ .                        (37)             

Then, the ML estimator 𝜽෡ can be acquired by the solution of the subsequent equation:   

 
డ௟൫𝜽,ఙഄ

మ; 𝒚൯

డ𝜽
ቚ

𝜽ୀ 𝜽෡
 =  0 ,   𝜽 = (𝑎, 𝑠, 𝜇, 𝑘, 𝑟)்  ,                                                                (38) 

where: 
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డ௟൫𝜽,ఙഄ
మ; 𝒚൯

డ௔
 =  

ଵ

ఙഄ
మ  ∑  ቌ

 ቀ 𝑦௜  −  𝑎 ቂ  1 − 𝑒 
ೞ

𝝁
 ൣଵି௘𝝁 ೝ ೖ ೣ೔  ൧

 ቃ ቁ

 ቂ  1 −  𝑒 
ೞ

ഋ
ൣଵି௘ഋ ೝ ೖ ೣ೔൧

ቃ
ቍ௡

௜ୀଵ ,                                    (39) 

 

డ௟൫𝜽,ఙഄ
మ; 𝒚൯

డ௦
 =  

ି ௔

ఓ ఙഄ
మ  ∑ ቌ

 ቀ 𝑦௜ − 𝑎 ቂ1 −  𝑒 
ೞ

ഋ
 ൣଵ ି ௘ഋ ೝ ೖ ೣ೔  ൧

 ቃ ቁ

 ቀ𝑒 
ೞ

ഋ
 ൣଵ  ି  ௘ഋ ೝ ೖ ೣ೔  ൧ 

ቁ [ 1 −  𝑒ఓ ௥ ௞ ௫೔  ]
ቍ௡

௜ୀଵ ,                                  (40) 

 

డ௟൫𝜽,ఙഄ
మ; 𝒚൯

డఓ
 =  ௔ ௦

ఓఙഄ
మ  ∑ ൮

 ൬ 𝑦௜  −  𝑎 ൤  1 −  𝑒 
ೞ

ഋ
 ൣଵି௘ഋ ೝ ೖ ೣ೔  ൧

൨൰ ൬ 𝑒 
ೞ

ഋ
 ൣଵ ି ௘ഋ ೝ ೖ ೣ೔൧

 ൰

ቀ  
ଵ

𝝁
 + 𝑥௜ 𝑟 𝑘 𝑒ఓ ௥ ௞ ௫೔ +

௘ഋ ೝ ೖ ೣ೔

𝝁
 ቁ

൲௡
௜ୀଵ ,             (41) 

 

డ௟൫𝜽,ఙഄ
మ; 𝒚൯

డ௞
 =  

௔ ௦ ௥

ఙഄ
మ  ∑ ቌ

 ቀ 𝑦௜  −  𝑎 ቂ  1 −  𝑒 
ೞ

ഋ
 ൣଵ ି ௘ഋ ೝ ೖ ೣ೔  ൧

 ቃ ቁ

ቀ𝑒 
ೞ

ഋ 
 ൣ ଵ ି ௘ഋ ೝ ೖ ೣ೔൧

ቁ ( 𝑒ఓ ௥ ௞ ௫೔) 𝑥௜

ቍ௡
௜ୀଵ ,                                   (42) 

 

డ௟൫𝜽,ఙഄ
మ; 𝒚൯

డ௥
 =  

௔௦௞

ఙഄ
మ  ∑ ቌ

 ቀ 𝑦௜  −  𝑎 ቂ  1 − 𝑒 
ೞ

ഋ
 ൣଵି௘ഋ ೝ ೖ ೣ೔  ൧

 ቃቁ

ቀ𝑒 
ೞ

ഋ
 ൣଵ ି ௘ഋ ೝ ೖ ೣ೔  ൧

 ቁ ( 𝑒ఓ ௥ ௞ ௫೔  ) 𝑥௜

ቍ௡
௜ୀଵ ,                                       (43) 

and  

డ௟൫𝜽,ఙഄ
మ; 𝒚൯

డఙഄ
మ  =  − 

௡

ଶ ఙഄ
మ  +  

ଵ

ଶ ఙഄ
ర  ∑ ቀ 𝑦௜  −  𝑎 ቂ  1 −  𝑒 

ೞ

ഋ
 ൣଵ ି ௘ഋ ೝ ೖ ೣ೔  ൧

 ቃ ቁ
ଶ

௡
௜ୀଵ .                   (44) 

To obtain the ML estimators, simply sets (39) - (44) equal to zero. The resultant system of 
nonlinear equations can be numerically solved using the Nelder Mead maximization 
algorithm.  

5 Simulation Study 

     The program algorithm estimation of the ML technique for sigmoid growth models is beginning 
with define the sigmoid growth models formula, next compute the initial values 
𝑎଴, 𝑘଴, 𝛽଴, 𝐿଴, 𝛾଴, 𝑟଴, 𝑠଴, 𝜇଴ of the sigmoid growth models of the data and assume that 𝜎ఌ

ଶ = 1, then 
estimate parameters of the sigmoid growth models by R program package ( maxLik ), using 
Newton Raphson maximization technique to solve the derived non-linear logarithmic likelihood 
equations simultaneously, also evaluate the resulting estimates using the Relative Absolute Bias ( 
RAB ) and Relative Mean Squared Error ( REMSE ), finally, repeat the above steps N times. 
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   Initial values:  

     One of the most challenging issues in non-linear model parameter estimation is initial value 
definition.   Starting values can be determined by using a preset procedure that automatically 
determines the first beginning values as follows: 

The starting value of 𝒂: The parameter 𝑎଴ served as the upper limit of the value of the dependent 
variable in the data. Then new 𝑎 is calculated for the different sigmoidal equations. 

The starting value of 𝒌: The parameter 𝑘 is the steady rate of increase in the response variable's 
maximum value. This definition allows one to write, 

𝑘 =  
( ௬೙ ି ௬భ )

௔బ (௫೙ ି ௫భ )
 ,                                                                                        

where  𝑦ଵ and  𝑦௡  are the response variable's values that match the initial 𝑥ଵ and the last 𝑥௡ 
observations. 𝑎଴ is the starting value specified for the parameter 𝑎. 

The starting value of 𝜸: The parameter 𝛾 is defined as the point of inflection value of the curve 
at explanatory variable or we can assume that 𝛾 is the value of the explanatory variable 

corresponding to 
௔బ

ଶ
 value of the dependent variable.  

The starting value of 𝜷: The starting value for the constant, 𝛽଴, was established by analyzing the 
model at the beginning of it is and assuming 𝛽 as the minimum of the dependent variable in the 
data. Then when the predictor variable is zero, substitute with new 𝛽 value for the different 
sigmoidal equations.  

    In this part, a Monte Carlo simulation can be performed to compare the performance of the 
suggested sigmoid growth model, Transmuted Gompertz Exponential, Gompertz Exponential, to 
some of the existed sigmoid growth models, such as Gompertz and Exponential. These estimators 
performance can be assessed using RAB and REMSE of the estimated coefficients, which are 
given by 

RAB൫ 𝜃෠ூ ൯  =  
หெ௘௔௡ ൫ ఏ෡಺ ൯ ି ఏ಺ ห

ఏ಺
,                                                                                                    (45) 

REMSE ൫ 𝜃෠ூ ൯  =  
ெௌா൫ ఏ෡಺ ൯

ఏ಺
,                                                                                                  (46) 

where 𝑀𝑒𝑎𝑛 ൫ 𝜃෠ூ  ൯  =  
ଵ

ே
 ∑ ( 𝜃෠ூ )௥

ே
௥ୀଵ  , 𝑟 is the replication of the total replications               𝑁 =

 1000, and 𝑀𝑆𝐸 ൫ 𝜃෠ூ  ൯  =  𝑣൫ 𝜃෠ூ ൯  + 𝑏𝑖𝑎𝑠ଶ൫ 𝜃෠ூ ൯.  

5.1 Simulation algorithm  

     The following procedures are employed to calculate the ML estimates, RAB and REMSE for the 
existing and suggested sigmoid growth models for varying numbers of samples 𝑛 =

20, 50, 100 and 200. The R program ( version 4.4.1 ) is used to build the simulation study's 
computation. In the subsequent phases, the performance of several sigmoid growth model 
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estimators is compared using functions in the R program, such as minpack.lm and bbmle packages, 
assuming a normal distribution of random errors꞉ 

1. For the Gompertz distribution generate the explanatory variables 𝑋௜ ~ gompertz (1,1), for 
the Exponential distribution generate 𝑋௜  ~ exponential (1), and For given values of the 
parameters 𝑠, 𝛾 and 𝑟 , the inverse cdf, can be used to generate the random variable of the 
explanatory ( 𝑋௜ ) from Gompertz Exponential distribution whose cdf is given in (9), Thus, by 
solving the non-linear equation 

𝑋௜  =  ((𝑙𝑜𝑔(1 − ((𝑙𝑜𝑔(1 − 𝑢௜))/(𝑠/𝜇)))) /𝜇 𝑟) , 𝑖 = 1 , … , 𝑛 . 

where: 𝑢௜ ~ standard uniform distribution ( 0,1 ).  

2. Generate the values of error, 𝜀௜ from the standard normal distribution. 

3. Following Caglar et al. (2018), can be simulated intensity noise from the uniform distribution 
and add the noise of parameter. 

4. The initial values of the coefficients are choosing as 𝑎 =  4, 𝑠 = 2, 𝐽 = 2, r =  1.1, 0 < 𝐿 <

1 𝛽 = 0.08 for small sample sizes, and  equal to 0.8 for large sample sizes, γ  ranging  
from 0.3811 to 0.9, 𝜇  ranging from 0.9 to 1.8618 , and 𝑘 ranging from 0.5895 to 1.3006. 

5. Obtain the response variables 𝑦௜  using the different equations (1), (2), (10), and (11) 
respectively, and add intensity noise. 

6. Obtain the ML estimates by solving (15) for the Gompertz model, solving (23) for the 
Exponential model, solving (30) for the Transmuted Gompertz Exponential model, and 
solving (38) for the Gompertz Exponential model. 

7. Compute the RAB and REMSE for each estimate using (45), (46) respectively. 

8. Plots the fitted of the different sigmoid growth curves. 

9. Repeat the above steps for all sigmoid models and all sample sizes 1000 times using R 
program.    

Simulation results are summarized in tables ( 1- 4 ), these tables give the estimated, RAB, and 
REMSE for all estimate of the single sigmoid growth models estimators. 
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Table 1: The average of the various sigmoid growth models predicted parameter values,  RAB, RMSE 
for sample size 20 at a = 4, s=2, β =0.08, and 𝑟 = 1.1. 

 
Model 

 
Estimator 

Average 
Estimate 

 
RAB 

 
REMSE 

 
Transmuted 

Gompertz Exponential 
 
 

𝝁 =   𝟐, 𝑳 = 𝟎. 𝟏 
𝒔ො 
𝝁ෝ 
𝒓ො 
𝑳෠  

1.85824 
1.30950 
0.66758 
0.29947 

0.07088 
0.34524 
0.39310 
1.99478 

0.01005 
0.34524 
0.16998 
0.39791 

 
 

Gompertz Exponential 

𝒌 =  𝟏. 𝟐𝟔𝟑𝟕𝟕, 𝝁 =  1.8618 
𝒂ෝ 
𝒔ො 
𝝁ෝ 
𝒌෡ 
𝒓ො 

3.14221 
1.04050 
1.36921 
1.97591 
1.72727 

0.21444 
0.47974 
0.26459 
0.56350 
0.57024 

0.18394 
0.46031 
0.13034 
0.40129 
0.35770 

 
 

Gompertz 

𝒌 =  𝟏. 𝟑𝟎𝟎𝟔𝟓, 𝛄 = 0.38111 
𝒂ෝ 
𝜷෡ 
𝒌෡ 
𝜸ෝ 

5.35136 
-0.12554 
2.50899 
0.45718 

0.33784 
2.56927 
0.92902 
0.19960 

0.45654 
0.52809 
1.12257 
0.01518 

 
 

Exponential 

𝝁 =  2 
𝒂ෝ 
𝜷෡ 
𝝁ෝ 

6.13051 
-0.60764 
1.66863 

0.53262 
8.59559 
0.16568 

1.13477 
 5.91073 
0.05490 

Table 2: The average of the various sigmoid growth models predicted parameter values, RAB, RMSE for 
sample size 50 at 𝑎 = 4, s=2, β =0.8 and 𝑟 = 1.1. 

 
Model 

 
Estimator 

Average 
Estimate 

 
RAB 

 
RMSE 

 
 

Transmuted 
Gompertz Exponential 

𝝁 =   𝟐, 𝑳 = 𝟎. 𝟑 
 

𝒔ො 
𝝁ෝ 
𝒓ො 
𝑳෠  

1.94168 
2.37515 
0.70132 
0.58260 

 
0.02915 
0.18757 
0.36243 
0.94201 

 
0.00170 
0.07037 
0.14449 

         0.26621 
 

 
Gompertz Exponential 

𝒌 = 𝟎. 𝟕𝟗𝟑𝟒𝟖, 𝝁 =0.9 
𝒂ෝ 
𝒔ො 
𝝁ෝ 
𝒌෡ 
𝒓ො 

3.30073 
1.26149 
1.01285 
1.12751 
1.30279 

0.17481 
0.36925 
0.12539 
0.42095 
0.18435 

0.12224 
0.27269 
0.01415 
0.14061 
0.03738 

 
 

Gompertz 

𝒌 =  𝟎. 𝟖𝟏𝟕𝟎𝟖 , 𝜸 = 𝟎. 𝟗   
𝒂ෝ 
𝜷෡ 
𝒌෡ 
𝜸ෝ 

4.93480 
0.85219 
1.43551 
1.05639 

0.23370 
0.06524 
0.75687 
0.17376 

0.21846 
0.00340 
0.46807 
0.02717 

 
 

Exponential 

 𝝁 =2 
𝒂ෝ 
𝜷෡ 
𝝁ෝ 

5.24063 
-0.24797 
3.75835 

0.31015 
1.30996 
0.87917 

0.38479 
1.37281 
1.54590 
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Table 3: The average of the various sigmoid growth models predicted parameter values, RAB, RMSE for 
sample size 100 at a = 4, s=2, β =0.8 and 𝑟 = 1.1. 

 
Model 

 
Estimator 

Average 
Estimate 

 
RAB 

 
RMSE 

 
 

Transmuted 
Gompertz Exponential 

 
 

𝝁 =   𝟐, 𝑳 = 𝟎. 𝟕 
 

𝒔ො 
𝝁ෝ 
𝒓ො  
𝑳෠  

2.00630 
1.95040 
1.22220 
0.70285 

 
0.00315 
0.02479 
0.11109 
0.00408 

 
0.00001 
0.00122 
0.01357  
0.00001 

 
 

Gompertz Exponential 

𝒌 =  𝟎. 𝟕𝟓𝟒𝟒𝟖, 𝝁 =0.9 
𝒂ෝ 
𝒔ො 
𝝁ෝ 
𝒌෡ 
𝒓ො  

4.54812 
1.84613 
0.94257 
0.73092 
1.23898 

0.13703 
0.07693 
0.04730 
0.03123 
0.12634  

0.07510 
0.01183 
0.00201 
0.00073 
0.01755 

 
 

Gompertz 

𝒌 =  𝟎. 𝟓𝟖𝟗𝟓𝟕, 𝜸 =0.9 
𝒂ෝ 
𝜷෡ 
𝒌෡ 
𝜸ෝ 

4.09552 
0.81036 
0.93651 
0.92168 

0.02388 
0.01295 
0.58844 
0.02409 

0.00228 
0.00013 
0.20415 
0.00052  

 
 

Exponential 

𝛍=2 
𝜶ෝ 
𝜷෡ 
𝝁ෝ 

4.33829 
0.54832 
1.70818  

0.08457 
0.31458 
0.14590 

0.02861 
0.07917 
0.04257 

Table 4: The average of the estimated parameter values of the different growth models, RAB, RMSE for 
sample size 200 at a = 4, s=2, β =0.8 and 𝑟 = 1.1. 

 
Model 

 
Estimator 

Average 
Estimate 

 
RAB 

 
RMSE 

 
Transmuted 

Gompertz Exponential 
 
 

𝝁 =   𝟐, 𝑳 = 𝟎. 𝟗𝟗 
 

𝒔ො 
𝝁ෝ 
𝒓ො  
𝑳෠  

2.00287 
1.99887 
0.99756 
0.99015 

 
0.00143 
0.00056 
0.09312 
0.00015 

 
0.00000 
0.00000 
0.00953 
0.00000 

 
 

Gompertz Exponential 

𝒌 =  𝟎. 𝟕𝟔𝟑𝟎𝟏, 𝝁 = 𝟎. 𝟗 
𝒂ෝ 
𝒔ො 
𝝁ෝ 
𝒌෡ 
𝒓ො  

  4.01869  
          2.06384 

0.89395 
0.77947 
1.12528 

0.00467 
0.03192 
 0.00671 
0.02156 
0.02298 

0.00008 
0.00203 
0.00004 
 0.00035 
0.00058 

 
 

Gompertz 

 𝒌 =  𝟎. 𝟕𝟕𝟓𝟒𝟒, 𝜸 =0.9 
𝒂ෝ 
𝜷෡ 
𝒌෡ 
𝜸ෝ 

4.06966 
 0.80728  

0.82715 
0.90264 

0.01741  
0.00910 
0.06668 
0.00294 

0.00121 
0.00006 
0.00347 
0.00001  

 
 

Exponential 

 𝝁 =2 
𝒂ෝ 
𝜷෡ 
𝝁ෝ 

4.20625 
 0.59158  

1.85276 

0.05156 
0.26051 
0.07361 

0.01064 
0.05423 
0.01083 
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The fitted growth curves are illustrated using R program and are shown in Figures ( 1 – 4 ) as 
follows: 

 

Figure 1 : Plots of the fitted sigmoid growth curves when 𝑛 =  20. 

 

Figure 2 : Plots of the fitted sigmoid growth curves when 𝑛 =  50. 
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Figure 3 : Plots of the fitted sigmoid growth curves when 𝑛 =  100. 

 

Figure 4 : Plots of the fitted sigmoid growth curves when 𝑛 =  200. 
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4.2   Simulation results 

The simulation study's primary findings are as follows꞉  

 According to the theoretical conclusions, the RAB and REMSE dropped as 𝑛 increased. 

 As 𝑛 increases, the average estimate values were very close to almost all initial sample sizes 
in all models. 

 It is found that, as 𝑘 value decreased, and the RAB, REMSE decreased, for different sigmoid 
models in most sample sizes.  

 As L increases, the average estimate values were very close to almost all initial sample sizes, 
and the RAB, REMSE decreased in all models. 

 As shown in Figures  ( 1 – 4 ), there are no outliers, and the curves have the sigmoidal shape " 
S-shaped " curve. 

 

6 Application 

The issue of Egyptian external debt has become noticeable as the amount of this debt has grown 
significantly, hitting record levels in the last ten years. This growth is important for implementing 
needed structural changes and boosting the Egyptian economy. Effectively handling the 
responsibilities of paying off external debt on time is vital to ensure it does not hinder the pursuit 
of desired growth rates. The research was based on World Bank data for the period from 2000 to 
2022, using the R program, and Transmuted Gompertz Exponential, Gompertz Exponential, 
Gompertz, and Exponential sigmoid growth models. 

To check the performance of the new suggested sigmoid growth models, the data set on the 
value of Egyptian external debt yearly from 2000 to 2022. The explanatory variable considered in 
this study is the number of years (𝑥) and the value of Egyptian external debt in million dollars (𝑦) 
is considered as a response variable, the data was recorded every year. 

29.2, 28.3, 28.6, 30.4, 31.4, 30.5, 29.5, 34.6, 33.9, 35.4, 33.6, 35, 36, 43.3, 46.1, 48.6, 55.8, 
82.8, 96.6, 108.8, 123.5, 137.8, 157.7 . 

 Figure 5 displays the relationship between the value of Egyptian external debt as response 
variable ( 𝑦 ), and the years as explanatory variable ( 𝑥 ) after the data are refined by applying the 
transformation of inverted variance. 
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Figure. 5 : Description of the value of Egyptian external debt over time. 

 
  The initial values are calculated as 𝑎଴  =  0.100317,  𝛽଴  =  0.018002, 𝑘଴  =  0.03729, 𝛾଴  =

  0.03,   𝜇଴  =  0.056,  s଴  =  0.0005, 0 <  𝐿଴  <  1  and r଴  =   1.7. Plots of growth curves, 
Transmuted Gompertz Exponential, Gompertz Exponential, Gompertz and Exponential are 
displayed in Fig. 2. Also, fitted growth curves of the Transmuted Gompertz Exponential, Gompertz 
Exponential, Gompertz and Exponential growth models for the data set are displayed in Fig. 3. 
Estimation of the model parameters are performed by ML technique are obtained by Newton-
Raphson maximization using maxLik package of                   ( R.4.4.1) Table 5 shows the parameter 
estimates by ML estimation and Approximate Standard Error (ASE). Also, for comparison 
between the models, the Akaike Information Corrected criterion (AICc) and Likelihood Ratio Test 
( LRT ) are used in ( Table 6 ). 

    The Akaike Information Corrected criterion ( AICc ) is a formula that adds a correction term to 
the Akaike Information criterion ( AIC ) to give a more accurate answer for smaller samples. AICc 
is the sum of AIC and an additional non-stochastic penalty term. The AICc is computed as follows: 

 

AICc =  − 2  𝑙 +  2  𝑏 +  
ଶ ௕ ( ௕ ା ଵ )

௡ ି ௕ ି ଵ
,                                                                             (47) 

where 𝑙 is the logarithm of likelihood function for the model, and 𝑏 represents the number of the 
model's parameter count. 

      The quality of fit of two statistical models is compared using the likelihood ratio tests (LRT). 
One way to compare nested models is via a Likelihood Ratio test. When two models are " nested 
", it indicates that one is a special case of the other, with fewer parameters fitted. Many refer to 
these as the " full " (more complicated) and " reduced " (simpler) models. In order to compare 
nested models, the LRT statistic is calculated as follows when the maximum likelihood approach 
is applied to fit the data: 

LRT =  2  𝑙𝑜𝑔 ቀ 
௅೑ೠ೗೗

௅ೝ೐೏ೠ೎೐೏
 ቁ  =  2  ൫ 𝑙𝑜𝑔൫ 𝐿௙௨௟௟ ൯ −  𝑙𝑜𝑔( 𝐿௥௘ௗ௨௖௘ௗ ) ൯,                               (48) 
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where 𝐿௙௨௟௟ and 𝐿௥௘ௗ௨௖௘ௗ are, respectively, the likelihood functions for the complete and reduced 

models.  

     This function is intimately associated with the residual sum of squares. It is assumed that LRT 
is approximately 𝜒ଶ  distributed with 𝑟  degrees of freedom, where 𝑟 is the difference in the number 
of fitted parameters between the complete and reduced models 

     For evaluating the selection models to the data, the following criteria are used: the coefficient 
of determination, 𝑅ଶ, Mean Squared Error ( MSE ) and Root Mean Squared Error ( RMSE ) as 
shown in Table 7 according to the following formulas: 

 

Rଶ  =  1 −  
∑ ( ௬೔ ି ௬ො೔ )మ೙

೔సభ

∑ ( ௬೔ ି ௬ො೔ )మ ೙
೔సభ ା ∑ ( ௬ො೔ ି ௬ത )మ೙

೔సభ

   ,                                                                                      (49) 

   

MSE =  
∑ ( ௬೔ ି ௬ො೔ )మ೙

೔సభ

௡ ି ௕ ି ଵ
   ,                                                                                                              (50)  

 

RMSE =  ට
∑ ( ௬೔ ି ௬ො೔ )మ೙

೔సభ

௡ ି ௕ ି ଵ
 ,                                                                                                         (51)    

    

where 𝑛 is the sample size, 𝑦௜  , 𝑦ො௜ are the actual and anticipated values, respectively, 𝑦 ഥ is the mean 
of observed values, and 𝑏 is the number of parameters in the model. 

 
Figure. 6 : Plots of sigmoid growth curves. 
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Figure. 7 : Plots of the fitted sigmoid growth curves. 

 

Table 5. Parameter estimates, approximate and standard errors of parameters for Transmuted 
Gompertz Exponential, Gompertz Exponential, Gompertz, and Exponential sigmoid growth 

model. 
 

 
Model  

 
parameter 

 
Estimate 

 
    ASE 

 
Transmuted Gompertz Exponential 

𝑠 
𝜇 
𝑟 
𝐿 

 0.00193 
 0.01706 
 0.02547 
 0.91623 

  0.03051 
 15.85994 
  2.02374 
  0.01024 

 
 
Gompertz Exponential 
 
 

𝑎 
𝑠 
𝜇 
𝑘 
𝑟 

 0.02011 
 0.00217  
 0.48619 
 0.13456 
 1.57427 

  0.31023 
  0.14860 
  24.01011 
  6.02675 
  1.03541 

 
Gompertz 

𝑎 
𝛽 
𝑘 

           𝑣 

  0.10351  
  0.01896 
  0.37456 
  10.30785 

  2.20913 
  0.33715 
 13.06731 
 52.74021 

 
Exponential 
 

𝑎 
𝛽 
𝜇 

  0.47421 
 -0.00193 
  0.06218 

 4.26652 
 0.44091 
 20.53771 
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Table 6. Evaluation of AICc, and p-values of LRT test for Transmuted Gompertz Exponential,           
Gompertz Exponential, Gompertz and Exponential sigmoid growth models 

 

 
 

Model AICc p-value 
Transmuted Gompertz Exponential 

Gompertz Exponential 

Gompertz 

Exponential 

 
7.830 

 
8.053   

 
10.222  

 
17.267  

 
2. 2 ×  10ିଵ଺ 

 
 

2. 2 ×  10ିଵ଺ 
 
 

2. 2 ×  10ିଵ  
 

2. 2 ×  10ିଵ଺ 
   

 
 

Table 7. The Rଶ, MSE, and RMSE for Transmuted Gompertz Exponential,                                              
Gompertz Exponential Gompertz and Exponential sigmoid growth models  

 

 

    The tables and fingers show that the LRT is significant ( 𝑝 − 𝑣𝑎𝑙𝑢𝑒 <  0.05 ) in all models, 
and all evaluated models fitted well the investigated curves of Egyptian external debt with Rଶ, MSE 
and RMSE values. The Transmuted Gompertz Exponential, and Gompertz Exponential models, 
are best suited to characterize Egyptian foreign debt accumulation over time due to its low AICc, 
the best since it had the largest value of Rଶ and the lowest value of MSE and RMSE.  

6.  Conclusions 

    In this research, suggested new sigmoid growth models are given that can capture the most 
diverse growth data scenarios. The new suggested models are based on the Gompertz Exponential 
distribution and employ the cdf formula using two different techniques, these models called the 
Gompertz Exponential, and Transmuted Gompertz Exponential sigmoid growth models. The ML 
estimation technique was used to determine the parameters of the new suggested models and some 
existing sigmoid growth models. Furthermore, the performance of the suggested and existed 
sigmoid growth models was examined using a Montecarlo simulation and, also application on the 
Egyptian foreign debt data from 2000 to 2022. The results show that Transmuted Gompertz 
Exponential sigmoidal growth model outperformed the Gompertz Exponential sigmoidal growth 
model, and other models in terms of Rଶ, MSE, RMSE, and AICc. 
 

Model 𝑹𝟐 𝐌𝐒𝐄 𝐑𝐌𝐒𝐄 

Transmuted Gompertz 
Exponential 

Gompertz Exponential 

Gompertz 

Exponential 

     0.99921 

     0.99846  

0.00010 

0.00011 

0.01000 

0.01049 

    0.99263 0.00025 0.01581 

     0.98720  0.00037 0.01924 
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