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Abstract 
     The calibration estimation has been applied in different fields and it constitutes a setup for many 
statistical problems. It has become an important topic in recent research on estimation in survey 
sampling. Calibration provides a systematic way to incorporate auxiliary information in the 
procedure. In this paper, using a Goal Programming (GP) model is newly suggested for the 
estimation of calibration weights in stratified random sample. This paper considers the skewed 
variables case with different calibration constraints as a result of using log-normal distribution for 
the study variable in stratified sample survey, and applied the suggested model to Egyptian Labor 
Market data. The results of the proposed approach for this survey are satisfying. 

Keywords: Calibration Weights Estimation; Stratified Random Sampling; Goal Programming 
Model; Auxiliary Variables; Log-Normal Distribution. 

1. Introduction: 
     A common method for modifying the initial weights under auxiliary information is calibration 
estimation, which involves minimizing a distance measure that serves as the foundation for 
calibration constraints. In the literature, researchers structure new calibration weights in stratified 
sampling to improve the precision of population parameter estimations. The process of creating 
new calibration weights consists of two main components: a distance measure and a set of 
calibration constraints [Ozgul, (2019)]. 

     In finite population sampling, there are various methods for using auxiliary information to 
improve the precision of the population parameter estimators. More effective estimators for 
population totals and means can be obtained in several ways. Any estimating technique needs to 
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first the weight sample data before calculating weighted averages. Calibration is used for changing 
sample weights in order to improve estimation, as these weights need to be adjusted frequently to 
produce better estimates [Nidhi et al. (2016)]. 

     When making statistical estimates, researchers often rely on the assumption that relevant 
variables follow a normal distribution, an assumption that can sometimes be incorrect. There are 
many variables that follow skewed distributions. It has been proven by many types of research that 
estimating data that follows skewed distributions, and has been assumed to be based on a normal 
distribution, can lead to many problems, including the problem of bias.  In this paper, we will 
estimate the calibration weights under skewed distributions, by using the Goal Programming (GP) 
approach as a flexible method for solving this problem.  

     The rest of this article is organized as follows: Section 2 is about previous studies of calibration 
estimation. In section 3, the calibration weights estimation approach for stratified random sample 
is presented. The MP model for calibration weights estimation of the optimum strata is given in 
section 4. The suggested GP approach for calibration weights estimation of the optimum strata is 
reviewed in section 5. Section 6 is presented suggested GP approach for calibration weights 
estimation of the optimum strata with skewed distribution. In section 7, the application of the 
suggested model is conducted using the Egyptian Labor Market sample survey. And present the 
result of this application in section 8. Finally, the conclusions introduced in section 9. 

2. Previous Studies of the Calibration Estimation: 
     Numerous survey statisticians have explored calibration estimation. The first study to use 
calibration estimates in survey sampling was by [Deville and Sarndal (1992)]. The calibration 
requirements were first established when auxiliary variables were included. Deville and Särndal 
first used the phrase "calibration estimation" to describe a process of minimizing a distance 
measure between design and calibrated weights that is subject to calibration equations.    

     The first work to extend the calibration approach to the stratified random sampling (STRS) 
design was [Singh et al. (1998)], who also established the calibration approach for the combined 
Generalized Regression Estimator (GRE). Many authors have contributed to the theory of 
calibration estimation in STRS after Singh et al. (1998). Singh (2003), they obtained calibration 
estimator of the population mean 𝑌ത under stratified sampling given by 

 𝑌ത௦ ௧
௦

= ∑ 𝑊 ௛
∗   ௅

 ௛ ୀଵ 𝑦 ഥ ௛ .                                                                  (2.1) 

     Here   𝑊 ௛
∗  ; ℎ = 1, 2, … , 𝐿  are calibrated weights which are chosen to minimize the sum of the 

chi-square distance measure given in  

                    ∑  
൫ ௐ ೓

∗  ିௐ ೓ ൯
మ

 ொ೓ ௐ೓

 ௅
 ௛ ୀ ଵ                                                        (2.2) 
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  Using Lagrange Multiplier Technique (LMT) subject to two fundamental calibration constraints,         
          ∑  𝑊 ௛

∗    ௅
 ௛ ୀ ଵ 𝑥 ഥ ௛  =  𝑋ത,                                                             (2.3)                         

         ∑   𝑊 ௛ 
∗  =  1 ௅

 ௛ ୀ ଵ .                                                                   (2.4)         

    Where 𝑥̅௛  and 𝑋ത are  ℎ௧௛ stratum sample mean and population mean respectively of the auxiliary 
variable 𝑋. 𝑄௛ is a carefully chosen constant that determines the final form of the calibrated 

estimators to decide different forms of estimators, [Berrada et al. (1996)], It can be equal to   
ଵ

  ௫ തതത೓
. 

    [Tracy et al.  (2003)], also used LMT according to two restrictions to minimize the function in 
(2.2) and obtain the calibration estimator of the population mean 𝑌ത  under stratified sampling. 
However, it differs from Singh in (2.4) in the second set of constraints, where the auxiliary 
variable's second-order moments were used. Thus, the following formulation of the second 
constraint can be made: 

        ∑ 𝑊 ௛
∗  𝑠 ௫௛

ଶ = ∑ 𝑊 ௛ 𝑆 ௫௛
ଶ    ௅

௛ ୀ ଵ ,௅
௛ ୀ ଵ                                               (2.5)                                                                                                         

where 𝑠 ௫௛
ଶ  and 𝑆 ௫௛

ଶ  are the sample and population variance of the auxiliary variable in the 

ℎ௧௛stratum respectively. 

     [Kim et al. (2007)], different calibration approach ratio estimators were proposed and the 
variance estimator of the calibration approach ratio type estimator in stratified sampling for four 
estimators was produced. [Rao et al. (2012)], developed new calibration weights for several 
auxiliary variables by applying LMT to minimize the chi square distance measure in (2.2), subject 
to the following two calibration restrictions: 
                 ∑ 𝑊 ௛

∗   ௅
௛ ୀ ଵ 𝑥̅  ௛  =  𝑋ത ଵ,                                                      (2.6) 

                 ∑ 𝑊 ௛
∗  ௅ 

௛ ୀ ଵ 𝑥 ഥ ଶ௛  =  𝑋തଶ.                                                     (2.7) 

     [Sud et al. (2014)] have developed a regression-type estimator of population total using the 
calibration approach suggested by [Deville and Särndal (1992)], When there is a negative 
correlation between the study and the auxiliary variables. Moreover, [Koyuncu and Khadilar, 
(2016)], used by minimizing the chi-square distance measure (2.2) and applying LMT to their 
calibration estimator, subject to three constraints that are the same as the constraints proposed in 
Singh, (2003) in (2.3), (2.4), and Tracy, (2003) in (2.5). They considered the suggested using them 
at one optimization problem simultaneously. 

     Clement (2015), created a modified population mean calibration estimator under the new 
restrictions by utilizing the auxiliary variable's mean, variance, and coefficient of the skewness. 
calibration estimator of the population mean 𝑌ത under stratified sampling is given by: 

                       𝑌ത௦ ௧
௖

= ∑ 𝑊 ௛
∗   ௅

 ௛ ୀଵ 𝑦 ഥ ௛.                                                  (2.8) 
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Clement using are calibrated weights which are chosen to minimize the sum of the chi-square 
distance measure given by (2.2) subject to the three calibration restrictions that follow: 
                     ∑  𝑊 ௛

∗   𝑥 ഥ ௛   =   ∑  𝑊 ௛ 𝑥 ഥ ௛
∗ ௅ 

 ௛ ୀ ଵ , ௅
 ௛ ୀ ଵ                                (2.9)            

                     ∑ 𝑊 ௛
∗   𝑠 ௫௛ 

ଶ =  ∑ 𝑊 ௛ 𝑠 ௫௛
∗ଶ ௅

 ௛ ୀ ଵ , ௅
 ௛ ୀ ଵ                               (2.10) 

                     ∑  𝑊 ௛ 
∗  𝛽 ෡

ଵ௫௛  =  ∑  𝑊 ௛ 𝛽 ଵ௫௛
∗ ௅

 ௛  ୀ ଵ . ௅
 ௛ ୀ ଵ                          (2.11) 

Where,  𝑥 ഥ ௛ &   𝑠 ௫௛
ଶ   are first phase of the samples mean and variance of the auxiliary variable X, 

respectively,  𝑥 ഥ ௛
∗  &  𝑠 ௫௛

∗ଶ   are the second phase of the samples mean and variance of the auxiliary 

variable X, respectively, and 𝛽ଵ௫௛
∗  & 𝛽መଵ௫௛  are the auxiliary variable X's sample coefficient of 

skewness in the first and second phase samples. 

     Rabee et al. (2021), developed the calibration estimation under STRS by incorporating two 
auxiliary variables, and formulated as the Goal Programming (GP) Model. They used the GP 
approach for solving different optimization problems. That contains too restrictive hard 
constraints. 

      Most authors of the calibration estimation literature looked at the calibration weights 
estimation as an optimization problem using the Lagrange Multiplier Technique (LMT), wherein 
the auxiliary variable-related constraints are minimized with the Chi-square distance function 
estimated. In the end, the optimal calibrated weights were estimated by applying the (LMT). 
Because the Lagrange Multiplier Technique requires the need that all model equations be 
differentiable functions, but there are often equations that cannot be differentiated. Therefore, it is 
important to explore an alternative method that can provide higher flexibility when dealing with 
different optimization problems. Hence, it is recommended to use MP technology as an effective 
solution to the problem of estimating calibration weights. 

3. Calibration Weights Estimation Approach for Stratified Random Sample: 

     In sample surveys, sample weights are frequently adjusted through a process called calibration. 
We treat the calibration as a problem of optimization and show that the calibrated weights depend 
on the optimization function selected. Suppose the population consists of ℎ strata with 𝑁 ௛  units 
in the ℎ ௧ ௛   stratum from which a simple random sample of size 𝑛௛ is taken without replacement. 

Let total population size be  𝑁 = ∑  𝑁 ௛
 ௅
௛ ୀ ଵ    and sample size be 𝑛 = ∑  𝑛 ௛

 ௅
௛ ୀ ଵ , respectively. For 

the  ℎ ௧ ௛   stratum, let  𝑊 ௛ =
ே ೓

 ே
  be the stratum weights, and 𝑦 ഥ ௛, 𝑌 ഥ

௛ are the sample and 

population means, respectively, for the study variable. It must be mentioned that under the STRS 
design, the unbiased estimator of the population mean:  

                 𝑌ത  =  ∑  𝑊 ௛ 𝑌 ഥ
௛

 ௅
 ௛ ୀ ଵ ,                                                        (3.1) 

 is given by [Cochran, (1977)] 

                           𝑦ത ௦ ௧  =   ∑  𝑊 ௛ 𝑦 ഥ ௛ 
 ௅
 ௛ ୀ ଵ ,                                                    (3.2) 
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 where    𝑦 ഥ ௛ =    
ଵ

௡ ೓
 ∑  𝑦 ௛ ௜

 ௡ ೓
 ௜ ୀ ଵ  ,                                                          (3.3) 

denotes the stratum sample mean ℎ ௧௛. Furthermore, the 𝑦 ഥ ௦௧ estimated variance under the Simple 
Random Sample Without Replacement (SRSWOR) scheme is given by:    

     𝑉 ( 𝑦 ഥ ௦௧ ) =  ∑  ቀ 
ଵ

 ௡ ೓
−

ଵ

  ே ೓
 ቁ 𝑊 ௛

ଶ   𝑆 ௛௬
ଶ ௅ 

௛ ୀ ଵ  

                  =  ∑   
ௐ ೓   

మ ௌ ೓ ೤
మ

 ௡ ೓
   ௅

  ௛ ୀ ଵ ,                                                              (3.4) 

where  𝑠 ଶ ௛௬  =   
ଵ

 ௡ ೓ ି ଵ
  ∑

    
  ( 𝑦  ௛௜ ି  𝑦 ഥ ௛ )ଶ  ௡ ೓

 ௜ ୀ ଵ                                        (3.5) 

is the sample variance of   𝑌    in the stratum ℎ, ℎ =  1, 2 , … , 𝐿. The usual estimator of population 

means that given (2.1) is unknown. Assume that 𝑋  ௜௝௛    denotes the 𝑖  ௛ unit's value of the 

𝑗  ௧௛  auxiliary variable in the stratum ℎ;   ℎ =  1, 2, … , 𝐿 , 𝑖 =  1, 2, … 𝑛 ௛  &  𝑗 = 1, 2, … , 𝑃. The 

estimate of population means 𝑋 ഥ
௝ =  ∑  𝑊௛  𝑋 ഥ

 ௝௛
 ௅
௛ ୀ ଵ  are accurately known by using the auxiliary 

information 𝑋 ௝. 

     Assume additionally that there are several auxiliary variables and that the sample values for 
these variables are known, either precisely or informally. The main objective of the calibration 
problem is to discover new weights 𝑊 ௛

∗  that take into account the auxiliary data in order to 
improve the initial weights.  

     In the presence of the population's parameter through merging data from more than one 
auxiliary variable, the suggested calibrated estimator of the population mean 𝑌ത under STRS is 
given by 

                       𝑦 ഥ ௦௧
௖ =  ∑  𝑊 ௛

∗   𝑦ത௛
 ௅
௛ ୀ ଵ .                                                                                  (3.6) 

where new weights 𝑊 ௛
∗  ; ℎ =  1, 2, … , 𝐿 represents the estimated calibration weights. When 

multiple auxiliary variables 𝑋 ௝, 𝑗 =  1, 2, … , 𝑃 are available, the calibration weights estimation 

𝑊 ௛
∗  are so chosen such that the sum of the chi-square type distances given (2.2) in minimum, 

subject to some specific calibration constraints, as following [(Rao et al, (2012)]                                        

                𝑋 ഥ
௝ =   ∑  𝑊 ௛

∗  𝑋 ഥ
 ௝௛

 ௅
௛ ୀ ଵ ,   𝑗 =  1, 2, … , 𝑃.                              (3.7) 

   Note that, the estimated variance of calibration estimation 𝑦ത  ௦ ௧
௖

  scheme is given by:    

              𝑉෠(𝑦 ഥ ௦௧
௖ ) =  ∑  ( 

 ଵି௙ ೓

 ௡ ೓
 ) 𝑊 ௛

∗ ଶ  𝑠 ௛௬
ଶ ௅

௛ ୀ ଵ ,                                      (3.8) 

where 𝑠 ௛௬ 
ଶ   is the sample variance of   𝑌    in the stratum ℎ, ℎ = 1, 2, … , 𝐿. The primary goal of 

this study is to introduce a new set of calibrated weights in order to offer new Multivariate 
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Calibration Estimation Incorporating two auxiliary variables using these calibrated weights will 
increase the precision of the results for stratified random sampling. 

4. MP Model for Calibration Weights Estimation of the Optimum Strata: 

     In this section, the optimal calibrated weights estimation problem is formulated as the MP 
model. It is known that any MP model consists of an objective function and constraints of the 
decision variable. The objective function that used in almost the previous studies for calibration 
weights estimation in stratified random sample is minimizing the chi-squared distance function. 
In this research, we used Manhattan distance (𝐿ଵ Norm) from the population stratum, Rabee 
(2022), using 𝐿ଵ decreases the impact of the outlier's existence that the design weights 𝑊௛  can 
be contains it.  

   The calibrated weights 𝑊 ௛
∗  ; ℎ =  1, 2, … , 𝐿, and the design weights (𝑊 ௛; ℎ = 1, 2, … , 𝐿) are 

represented by a Manhattan distance measure in the objective function. Thus, it can be stated as 
follows:  

               Minimize  𝑍 =  ∑  |𝑊 ௛ − 𝑊 ௛
∗  |௅ 

௛ ୀ ଵ                                        (4.1) 

where 𝑊 ௛ and 𝑊 ௛
∗   are the design weight and calibrated weight for the ℎ ௧ ௛   stratum respectively; 

ℎ = 1, 2, … , 𝐿. 

     The calibration weights 𝑊 ௛
∗   are chosen to minimizing a given distance measure subject to 

satisfying constraints related with auxiliary variables. The three constraints include the main key 
of the calibration procedure. The constraints can be stated as follows: 

             ∑  𝑊 ௛
∗  𝑥 ഥ  ௝௛  =  ௅

௛ ୀ ଵ 𝑋ത ௝,                                                              (4.2) 

            ∑  𝑊 ௛
∗   𝑠 ௫௝௛

ଶ  =  𝑆 ௑௝
 ଶ   ௅ 

 ௛ ୀ ଵ ,  𝑗 = 1, 2, … , 𝑃.                                (4.3)  

            ∑  𝑊 ௛
∗  =  1 ௅

 ௛ ୀ ଵ .                                                                        (4.4)                                                

     Where 𝑥 ഥ ௛ ௝ =  
ଵ 

௡ ೓
∑  𝑥  ௜௝௛

 ௡ ೓
௜ ୀ ଵ   and 𝑋ത ௝ are  ℎ ௧ ௛ stratum sample mean and population mean 

respectively of the   𝑗௧௛    auxiliary variable in eq (4.2), and where 

𝑠 ௫௝௛
ଶ  ቄ ∑  ൫𝑥  ௜௝ − 𝑥 ഥ  ௝௛൯

ଶ ௡೓
 ௜ ୀ ଵ  ( 𝑛 ௛ − 1 ) ൗ ቅ & 𝑆 ௑௝

ଶ  ቄ ∑  ൫𝑋 ௜௝ − 𝑋ത ௝ ൯
ଶ ே

 ௜  ୀ ଵ  ( 𝑁 − 1) ൗ ቅ  are the 

sample and population variances of the auxiliary variable X, respectively that in eq (4.3). 

     In addition, two other constraints are suggested to improve the precision of the calibration 
weights estimation. Can be expressed those constraints as following: 

             ∑  
ௐ ೓

∗ మ ௌ ೓ ೤
మ

 ௡ ೓

௅ 
௛ ୀ ଵ   ≤   𝑣                                                            (4.5) 

             |∑  𝑊 ௛
∗   𝑦ത ௛ −  𝑌ത௅

 ௛ ୀ ଵ |  ≤  𝜖                                                   (4.6) 
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     In eq (4.5)   ∑
ௐ ೓

∗ మ  ௌ ೓ ೤
 మ

  ௡ ೓

 ௅
 ௛ ୀ ଵ    represents the estimated variance of  𝑦ത ௦ ௧  , where  𝑠  ଶ

௛௬ = 

 ଵ

 ௡ ೓ ି ଵ
 ∑

    
 ( 𝑦 ௛ ௜ ି 𝑦 ഥ ௛)ଶ ௡ ೓

 ௜ ୀ ଵ    is the sample variance of the study variable  𝑌 ௛  in the stratum  ℎ ௧ ௛,  

ℎ = 1, 2, … , 𝐿. 

     The constraint in eq (4.6) was added in order to keep the estimate unbiased of the calibration 
weights estimator [Rabee et al. (2021)]. 

     Then to determining the optimum calibration weights estimation can be formulated using MP 
model as follows: 
Find  𝑊 ௛

∗
 ; ℎ = 1,2, … , 𝐿, that 

Minimize  𝑍 =  ∑  |𝑊 ௛ − 𝑊 ௛
∗  | ௅

 ௛ ୀ ଵ ,                                                    (4.7)  
         Subject to 
           ∑ 𝑊 ௛

∗   𝑥̅ ௛௝ =  ௅
௛ ୀ ଵ 𝑋ത ௝,              𝑗 = 1, 2, … , 𝑃,                            (4.8) 

           ∑ 𝑊 ௛
∗   𝑠 ௫௝௛

ଶ  =  𝑆 ௫௝
 ଶ   ௅

 ௛ ୀ ଵ ,         𝑗 = 1, 2, … , 𝑃,                           (4.9)  

           ∑  𝑊 ௛
∗  =  1 ௅

௛ ୀ ଵ ,                                                                         (4.10) 

           ∑  
ௐ ೓

∗ మ  ௦ మ
 ೓ ೤ 

  ௡ ೓

 ௅
 ௛ ୀ ଵ   ≤  𝑣,                                                               (4.11) 

          |∑  𝑊 ௛
∗  𝑦 ഥ ௛ −  𝑌ത ௅

 ௛ ୀ ଵ | ≤  𝜖,                                                           (4.12)   

               𝑊 ௛
∗  ≥  0,   ℎ = 1, 2, … , 𝐿.                                                              (4.13) 

Where 
𝑊 ௛:   the population weights of the stratum  ℎ ௧௛,   ℎ  is called number of the strata. 

𝑊 ௛
∗  :   the population calibration weights of the stratum  ℎ  ௛, ℎ = 1, 2, … , 𝐿. 

𝑥̅  ௝௛ :   the sample mean for the  𝑗 ௧ ௛
  auxiliary variable;  𝑗 = 1, 2, … , 𝑃.       

𝑋 ഥ
௝  :    the population mean for the  𝑗 ௧ ௛

 auxiliary variable.  

𝑠 ௫௝௛
ଶ :  the sample variance for the  𝑗 ௧ ௛

  auxiliary variable. 

𝑆 ௑௝
ଶ  :   the population variance for the 𝑗  ௧ ௛

 auxiliary variable. 

𝑠ଶ
௛ ௬ :  the sample variance of the study variable 𝑦 for stratum  ℎ ௧ ௛ . 

𝑛 ௛:      the sample size of the stratum  ℎ ௧ ௛.  
𝑣 ∶      the estimated variance of the population mean for the calibrated weights estimator, which 
will be obtained from previous studies. 
𝑦ത௛ :     the study variable's sample mean  𝑦 ௛ for stratum  ℎ ௧ ௛. 
𝑌   തതതത:       the population mean for the variable under study. That can be obtained it from previous 
studies. 
𝜖:   the positive constant with small value about the bias estimate's calibrated weights estimators, 
(given small value). 
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5. Suggested GP Approach for Calibration Weights Estimation of the Optimum 
Strata: 

     The GP approach has been accepted as a basic MP model for solving different optimization 
problems.     The primary goal of this section is to introduce a new set of calibrated weights in order 
to offer new Multivariate Calibration Estimation Incorporating two auxiliary variables using these 
calibrated weights will increase the precision of the results for stratified random sampling. To 
estimate the calibration weights in stratified random sample using GP approach. That can be 
expressed as follows: 

Find  𝑊௛
∗

 ,  𝑑𝑛௜, 𝑑𝑝௜;  ℎ = 1,2, … , 𝐿,  𝑖 = 1, … , 𝑘 that 

Minimize  :     𝑍 =  ∑ (𝑑𝑛௜ +௞
௜ 𝑑𝑝௜)                                                      (5.1) 

Subject to 

                      𝑊௛
∗

  +  𝑑𝑛ଵ − 𝑑𝑝ଵ =  𝑊௛,      ℎ = 1,2, … , 𝐿                             (5.2) 

              ∑
ௐ೓

∗మ ௦మ
೓೤ 

௡೓

௅
௛ୀଵ  + 𝑑𝑛ଶ − 𝑑𝑝ଶ =  𝑣,                                          (5.3)         

             ∑ 𝑊௛
∗ 𝑥̅௛௝  +  𝑑𝑛ଷ − 𝑑𝑝ଷ  = ௅

௛ୀଵ 𝑋ത௝,                                           (5.4) 

             ∑ 𝑊௛
∗ 𝑠௫௛௝

ଶ +  𝑑𝑛ସ − 𝑑𝑝ସ  =  𝑆௫௝
ଶ  ௅

௛ୀଵ ,                                        (5.5) 

             ∑ 𝑊௛
∗ 𝑦ഥ௛

௅
௛ୀଵ  + 𝑑𝑛ହ − 𝑑𝑝ହ =   𝑌ത,                                             (5.6)  

                     ∑ 𝑊௛
∗  = 1௅

௛ୀଵ ,                                                                                                    (5.7) 

                   𝑊௛
∗, 𝑑𝑛௜ ,  𝑑𝑝௜  ≥ 0,  ℎ = 1,2, … , 𝐿 ,  𝑖 = 1, … , 𝑘.  

  Where, 𝑑𝑛 ௜ ,  𝑑𝑝 ௜   are negative and positive deviation variables  respectively of the  𝑖 ௧ ௛ goal , 
𝑖 is the total number of constraints, and 𝑖 = 1, … , 𝑘.  Also, the first constraint was added in this 
approach as follows: 𝑊 ௛

∗ + 𝑑𝑛ଵ − 𝑑𝑝ଵ = 𝑊 ௛, where it represents the main goal when using 

calibration estimation, which was previously expressed as  minimize  𝑍 =  ∑  |𝑊 ௛ − 𝑊 ௛
∗  | ௅ 

 ௛ ୀ ଵ , 
as it is equivalent to that expression in eq (5.1). 

6. Suggested GP Approach for Calibration Weights Estimation of the Optimum 
Strata with Skewed Distribution: 

     In this section, the suggested the GP Approach for Calibration Weights Estimation of the 
Optimum Strata under skewed distributions is presented. Let the probability distribution for the 
study variable of Y is log-normal. The probability density function is as follows: 

  𝑓(𝑦) =  
ଵ

 ௬ ఙ √ଶగ
 ቂ 𝑒𝑥𝑝 − ቀ 

௟௢௚(௬) ି ఓ

 ఙ√ଶ
 ቁቃ ,      −∞ < 𝜇 < ∞, 𝜎 ≥ 0              (6.1) 

where the study variable is y and the parameters −∞ < 𝜇 < ∞, 𝜎 ≥ 0  all are real numbers. 
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    For stratified random sample with the strata and using the GP approach to obtain the calibration 
weights estimation for Log-Normal distribution is study variable with two auxiliary variables the  
𝑗 ௧௛

 ;  𝑗 = 1, 2. , the GP is as follows: 
     Find  𝑊 ௛

∗ , 𝑑𝑛 𝑖, 𝑑𝑝 ௜; ℎ = 1,2, … , 𝐿,    that 

    Minimize: 𝑍 =  ∑  (𝑑𝑛 𝑖 + 𝑘
 𝑖 𝑑𝑝 

𝑖
),                                                              (6.2) 

Subject    
                     𝑊 ௛

∗
  +  𝑑𝑛ଵ − 𝑑𝑝ଵ =  𝑊 ௛ ,      ℎ = 1,2, … , 𝐿                                                       (6.3)                                                        

             ∑  
ௐ ೓

∗ మ

 ௡ ೓
 ൣ𝑒ଶఓ ା ఙమ

 ൫𝑒ఙమ
− 1൯൧  ௅

 ௛ ୀ ଵ +   𝑑𝑛ଶ − 𝑑𝑝ଶ = 𝑣,                     (6.4)         

             ∑  𝑊 ௛
∗   𝑥 ഥଵ௛  +   𝑑𝑛ଷ − 𝑑𝑝ଷ = ௅ 

 ௛ ୀ ଵ 𝑋തଵ,                                             (6.5) 

             ∑  𝑊 ௛
∗   𝑥 ഥ ଶ௛ +   𝑑𝑛ସ − 𝑑𝑝ସ   =  ௅

 ௛ ୀ ଵ 𝑋തଶ,                                            (6.6)         

             ∑  𝑊 ௛
 ∗ 𝑠 ௫ଵ ௛

ଶ  +   𝑑𝑛ହ − 𝑑𝑝ହ  =  𝑆 ௑ଵ
 ଶ   ௅

 ௛ ୀ ଵ ,                                       (6.7) 

             ∑ 𝑊 ௛ 
∗  𝑠 ௫ଶ ௛

ଶ  +  𝑑𝑛଺ − 𝑑𝑝଺ =  𝑆 ௑ଶ
ଶ   ௅

 ௛ ୀ ଵ ,                                         (6.8)   

             ∑  𝑊 ௛
∗  𝑦 ഥ ௛

 ௅
 ௛ ୀ ଵ  +  𝑑𝑛଻ − 𝑑𝑝଻ =  𝑌ത,                                                   (6.9)      

                     ∑  𝑊 ௛ 
∗  = 1 ௅

 ௛ ୀ ଵ ,                                                                                                                        (6.10) 

                   𝑊௛
∗, 𝑑𝑛௜, 𝑑𝑝௜  ≥ 0, ℎ = 1,2, … , 𝐿 , 𝑖 = 1, … , 𝑘.  

     Where, 𝑑𝑛 ௜ ,  𝑑𝑝 ௜   are negative and positive deviation variables  respectively of the  𝑖 ௧ ௛ goal , 
𝑖 is the total number of constraints, and 𝑖 = 1, … , 𝑘  And where,    𝑉𝑎𝑟(𝑦ത௦௧) =

 ∑  
ௐ೓

∗మ

௡೓
 ൣ𝑒ଶఓ ା ఙమ

 ൫𝑒ఙమ
− 1൯൧௅

௛ୀଵ  is the variance of stratified random sample mean, and    

ൣ𝑒ଶఓ ା ఙమ
 ൫𝑒ఙమ

− 1൯൧ =  𝑠ଶ
௛௬   is the variance of stratum for variable in the ℎ௧௛ stratum   under Log-

Normal distribution.  

 7. The Application of the suggested Model: 

      In this section, the suggested model is applied on Egyptian Labor Market Survey, where the 
main study variable is the number of education years, and two auxiliary variables are age and the 
wealth index, In addition, there are two strata according to the gender variable (males and females). 
This application aims to use the suggested model of the calibration weights and find the variance 
of the calibrated estimator of numbers of the education years average. Tables (7.1) and (7.2) 
present the main information for the data of the considered variables for the application from the 
samples and the population. 

Table 7.1: Basic information about the sample survey 

Strata(h) 𝒏 𝒉 𝒙ഥ𝟏𝒉 𝒙ഥ𝟐𝒉 𝒚ഥ𝒉 𝒔𝒙𝟏𝒉
𝟐  𝒔𝒙𝟐 𝒉

𝟐  𝒔𝟐
𝒚𝒉    

Male   1 9206 44.36 1.93 11.206 150.121 422.485 26.169 

Female 2 6940 43.09 5.33 11.127 143.093 479.801 27.957 

Total 16146       



Volume 44, Issue 4. 2024,182-195                                 The Scientific Journal of Business and Finance 
 

  192

Table 7.2: Basic information about the population 
Strata (h ) Stratum size 

(Nh) 
Population 

stratum 
weights 

(𝑾𝒉)  

Some parameter of 
population 

Male   1 19179990 0.519127644 𝑋തଵ = 47.04 

Female 2 17766588 0.480872356 𝑋തଶ = −1.64 

 N=36946578  𝑆௫ଵ
ଶ = 158.67 

   𝑆௫ଶ
ଶ = 1732.807 

    This section is concerned with applying the suggested calibration weights estimation with 
skewed distribution by using Goal programming (GP). When the probability distribution for the 
study variable of (𝑌) is the log-normal distribution and the application on Egyptian Labor Market 
Survey, the estimated value of the parameters of the education of years variable is 𝜇 = ( 2.2999, 

2.2818), 𝜎ଶ =  ( 0.2331, 0.2551) for the strata with the mean is expected (𝑌) =  exp ቀ𝜇 +  
ఙమ

 ଶ
ቁ, 

that equal to (11.206, 11.127) and the variance is 𝑉𝑎𝑟(𝑌) =  [𝑒𝑥𝑝 (𝜎ଶ) − 1] 𝑒𝑥𝑝 (2𝜇 +  𝜎ଶ). 
That equal to (26.169, 27.957). µ is estimated from the data average ln (yi) and 𝜎ଶ  is estimated by 
the variance of ln (yi) 

     For using the GP approach we will obtain the calibration weights estimation with Log-Normal 

distribution as follows: 

Find  𝑊 ௛
∗ , 𝑑𝑛 ௜, 𝑑𝑝 ௜;  ℎ = 1, 2.  that 

Minimize 𝑍 =  ∑  (𝑑𝑛 ௜ +଻
௜ 𝑑𝑝 ௜),                                                           (7.1)                                        

         Subject to  

  𝑊 ଵ
∗  +  𝑑𝑛ଵ − 𝑑𝑝ଵ =  0.519,                                                                  (7.2)                                             

  𝑊 ଶ
∗ +  𝑑𝑛ଶ − 𝑑𝑝ଶ = 0.480,                                                                   (7.3) 

26.169 𝑊 ଵ 
∗ଶ + 27.957 𝑊 ଶ

∗ଶ +   𝑑𝑛ଷ − 𝑑𝑝ଷ =  0.00169758,                       (7.4) 
44.36 𝑊 ଵ

∗ + 43.09 𝑊 ଶ
∗ +  𝑑𝑛ସ − 𝑑𝑝ସ = 47.04,                                          (7.5) 

1.93 𝑊 ଵ
∗ + 5.33 𝑊ଶ

∗ +  𝑑𝑛ହ − 𝑑𝑝ହ = −1.64,                                           (7.6) 
150.121 𝑊ଵ

∗ + 143.093 𝑊ଶ
∗ +  𝑑𝑛଺ − 𝑑𝑝଺=158.67,                                 (7.7) 

422.485 𝑊 ଵ
∗ + 479.801 𝑊 ଶ

∗ +   𝑑𝑛଻ − 𝑑𝑝଻ = 1732.807,                           (7.8) 
𝑊 ଵ

∗ +  𝑊 ଶ
∗ = 1,                                                                                            (7.9) 

𝑊 ௛
∗  ≥ 0,  ,  ℎ = 1, 2 . 

Where, 𝑊ଵ =  0.519,  𝑊ଶ  =  0.480,  𝑑𝑛 ௜, 𝑑𝑝 ௜ ≥ 0 & ℎ = 1, 2 & 𝑖 = 1, 2 … , 7 . 

     In this application, we used the software GAMS (General Algebraic Modeling System) models 
to solve these models.  

8. Result of the Application: 
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     This section presents the results of solving the multivariate calibration weights estimation 
model proposed by equations (7.1) to (7.9), which is used with application to Egyptian labor 
market data using GAMS and is solved by nonlinear programming. The following table (8.1) 
shows the estimated calibration weights given as follows. 
 
 Table 8.1: The Estimated Calibrated Stratum Weights 

Strata (h ) weights  calibration 
weights 

1 0.5191 0.519 
 

2 0.4809 0.481 
 

Sum 1 1 

     Through the values mentioned in the previous table and the results achieved, the values for 
estimating the multivariate calibration weights were obtained. Therefore, the estimated variance 
value for 𝑦ത ௦ ௧    is calculated as 0.001697693, while the estimated variance value based on the 
weights is 0.00169758. As a result, using multivariate calibration weights with skewed distribution 
improves the estimate's accuracy and gives the estimated variance is unbiased estimator for the 
population mean.   

 9. Conclusion: 
     In this paper, a new approach is proposed to estimate the multivariate calibration of the 
population mean of the studied variable with a skewed variable under the STRS model. By 
introducing additional calibration constraints for the lognormal distribution of the studied variable 
and applying the objective programming method, new calibration weights are generated. The 
accuracy of the proposed estimator is evaluated using this model applied to the Egyptian labor 
market data. According to the results, the proposed estimator is better than the previously used 
alternative calibration in terms of estimations. In particular, the GP technique provides a more 
flexible and efficient calibration estimator in the presence of a skewed variable for stratified sample 
design, in addition to the estimated variance is considered an unbiased estimator of the population 
mean.    
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