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    Abstract 

 Analyzing recurring event data is crucial in clinical, epidemiological, and a wide range 
of other fields, requiring consideration of the interdependence among events within individuals 
and potential variability in event likelihood across different individuals. This paper introduces 
a comprehensive suite of models aimed at addressing the gap in parametric frailty models 
designed for recurrent events. The proposed models encompass five distinct baseline intensities 
and integrate gamma, inverse Gaussian, and positive stable frailty distributions. Parameter 
estimation is optimized for maximizing the marginal log-likelihood and accommodates both 
right-censored and potentially left-truncated data. Model selection is facilitated through the 
Aikake Information Criterion (AIC) and Bayesian Information Criterion (BIC). Simulation 
studies assess the computational algorithm and the efficacy of the proposed models. The 
models' performance is further demonstrated through the analysis of a dataset focusing on 
recurrent outcomes of phototherapies. Among the proposed models, the one based on a gamma 
frailty and Weibull baseline intensity stands out with a lower AIC and BIC, establishing it as 
an enhanced and robust framework for capturing underlying patterns in eczema datasets. The 
estimates within this model include baseline intensity parameters, incidence relative risk for 
potential covariates, and the frailty's variance. Beyond capturing the effects of risk factors, the 
frailty's variance indicates the presence of unobserved heterogeneity in recurrent events not 
accounted for by the risk factors in the model. The extensive evaluation, involving simulation 
studies and real-world data analysis, underscores the utility and effectiveness of these 
parametric frailty models, making a significant contribution to the field of survival analysis. 

Keywords:  Parametric Frailty Models, Baseline Intensity, Model Selection, Recurrent     
Events, Frailty Distributions 
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1. Introduction  

The event of interest may occur more than once during a study when dealing with recurrent 
event data. Hospitalizations, asthma attacks in children, cardiovascular diseases, bleedings, and 
tumors that recur are a few examples of these kinds of incidents. There is a wealth of literature 
on examining single-variant recurrent event data. Occasionally, during the study, two or more 
distinct recurrent event types may occur, and those distinct recurrent event types may be 
correlated with one another. We call this kind of data as multi-type recurrent event data. It 
might not be enough to conduct independent analyses for every kind of recurrent event while 
ignoring the interdependence between event types when dealing with multi-type recurrent 
event data. Events of interest that repeat themselves within a person or a system are referred to 
as recurrent events. In a number of disciplines, such as epidemiology, engineering, finance, 
and medical research, these occurrences are frequent (Van Eck, Berkhof, Nicolson, & Sulon, 
1996). Recurrent occurrences in the medical domain may include readmissions to the hospital, 
recurrences of a particular clinical outcome, or disease relapses. When it comes to fields where 
repeated occurrences are common, analyzing recurrent events is essential to understanding the 
underlying processes and making well-informed decisions (Ng, Tawiah, McLachlan, & 
Gopalan, 2023). For the purpose of examining time-to-event data for a single occurrence, 
conventional survival analysis methods like the Cox proportional hazards model work well. 
Nevertheless, these approaches frequently fail to capture the correlation between repeated 
occurrences within the same subject, making them unsuitable for handling recurrent events. 
Neglecting this correlation may result in erroneous statistical inference and biased parameter 
estimations. The realization that individuals or entities within a population may display 
unobserved heterogeneity or frailty that affects the frequency and timing of recurrent events 
gives rise to the necessity for frailty models. Frailty can be viewed as a latent variable that 
captures the unmeasured attributes or circumstances that influence a person's likelihood of 
experiencing an event (Ding, Kuha, & Murphy, 2017). It represents an individual's 
susceptibility to the event. Therefore, by adding individual-specific random effects, frailty 
models offer a more complex and realistic way to model recurrent events. 

 

A subset of frailty models known as parametric frailty models treat the frailty term as a 
random variable with a known distribution and assume a particular parametric form for the 
baseline hazard function (Balia & Jones, 2007). The baseline hazard and the frailty effect can 
be modeled in a more flexible and understandable way thanks to this parametric approach 
(Tarekegn et al., 2020). When there is significant individual heterogeneity in the study 
population, it is especially helpful, and capturing this heterogeneity is crucial for a thorough 
analysis (Borenstein, Hedges, Higgins, & Rothstein, 2017). Frailty models are widely used and 
have implications for many different fields of study. Frailty models have the potential to 
enhance our knowledge of the variables that impact the course and recurrence of diseases in 
medical research. These models can improve the long-term prediction of system failures and 
maintenance requirements in engineering and reliability analysis. Frailty models are useful in 
social sciences to study patterns of recurrent events or behaviors in human populations (Bedair, 
Hong, Li, & Al-Khalidi, 2016). Research in many scientific fields frequently focuses on 
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studying recurrent events, or situations in which a particular event does not occur once but 
rather repeatedly over time. Such phenomena are difficult to study analytically because the 
complexities in the data may be too complex for standard statistical models to fully capture. 
Frailty models have become essential instruments for tackling these issues and improving 
analysis accuracy (Cui et al., 2008). By including frailty terms which take into consideration 
individual-specific factors that might affect the recurrence of events these models provide a 
sophisticated framework (Tawiah, 2019). Frailty models offer a nuanced understanding of the 
underlying processes governing recurrent events by taking into account unobservable and time-
invariant characteristics specific to each individual (Moguilner et al., 2021). 

 

By using this nuanced approach, researchers can better understand the data and produce a 
more accurate and thorough depiction of the phenomena they are studying. Research findings 
are more accurate and insightful when frailty terms are incorporated into recurrent event 
analyses. These variables function as latent variables, symbolizing the unobservable variation 
among participants in a research sample. Frailty models provide a more accurate representation 
of the intrinsic variability in recurrent event data by recognizing and accounting for these latent 
factors. As a result, because the models take into consideration both known and unknown 
sources of variation, researchers are able to make well-informed decisions and predictions 
(Woodman & Mangoni, 2023). When working with repeated occurrences, this thorough 
understanding improves the validity of statistical inferences, allowing researchers to make 
more reliable conclusions and more precise predictions. Therefore, frailty models represent an 
important methodological development that gives researchers a potent tool for deciphering the 
subtleties of recurring events in a variety of study domains (Hao et al., 2021). Within the 
framework of survival analysis, fragility refers to unrecognized individual variability that 
influences an individual's susceptibility to recurrent events. This unobserved frailty component 
accounts for individual-specific traits that influence variability in the risk of experiencing 
recurrent events, such as genetic predispositions or other unmeasured factors. This idea is 
integrated in parametric frailty models by adding a random effect term to the hazard function 
(Rouast, Adam, & Chiong, 2019). This means that the hazard function is now a function of the 
individual-specific frailty term and the baseline hazard. Frailty is incorporated into the model 
to acknowledge that some people may be more or less predisposed to experiencing recurrent 
events, and to account for the correlation among recurrent events within the same individual 
(Sarker, 2021). 

 

There is a clear and significant gap in the frailty models that are currently available, 
particularly when taking into account the analysis of recurring events. Our paper aims to bridge 
this gap by providing a wide range of frailty models that are specifically made to deal with 
recurrent events. This closes a significant gap in the literature by giving researchers a flexible 
and unified toolkit for examining time-to-event data when it comes to recurrent events. Our 
suggested models are rich because they include a variety of frailty distributions, such as 
positive stable, inverse Gaussian, and gamma distributions. These distributions are selected to 
allow for a more nuanced depiction of individual variability in the risk of experiencing 
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recurrent events because they can capture different aspects of frailty. Moreover, our models are 
flexible and applicable in a variety of scenarios because they are based on five different 
baseline hazards. A key component of our methodology is the estimation of model parameters, 
and we take a conservative approach by maximizing the marginal log-likelihood. This approach 
takes into account data that has been censored to the right or may have been truncated to the 
left, recognizing the complexity of real-world situations that arise in survival analysis. Our 
models' usefulness in real-world applications is increased by resolving these issues and making 
them more capable of producing precise and trustworthy parameter estimations. In this 
research, model selection a crucial phase in the analysis process is handled methodically. We 
assess and contrast the performance of various models using the log-likelihood ratio test, AIC, 
and BIC. This enables us to determine which model fits the data the best using a combination 
of model parsimony and statistical rigor. By providing a cohesive and all-inclusive collection 
of parametric frailty models designed especially for recurrent events, the research addresses a 
crucial gap in survival analysis. We hope to give researchers a strong toolkit for deciphering 
the complexities of time-to-event data in the presence of recurrent occurrences through a 
thorough methodology that includes baseline intensity functions, a variety of frailty 
distributions, and reliable parameter estimation techniques. 

The following are the research study's principal contributions: 

 Develop a set of parametric frailty models tailored specifically for the analysis of 
recurrent events. 

 Integration of gamma, inverse Gaussian, and positive stable frailty distributions with 
five distinct baseline intensity functions. 

 Utilizing statistical tools to find the best-fitting parametric frailty model, such as the 
log-likelihood ratio test, the AIC, and the BIC. 

 Developing a cohesive and adaptable modeling framework that can capture the 
subtleties of recurrent event data. 

 

The following is the arrangement of the remained sections in this article: A summary of 
relevant studies is given in Section 2. The problem statement for the current system is given in 
Section 3. In Section 4 of the paper, the methodology of parametric frailty models for recurrent 
events are described. Section 5 introduces the simulation study. The results of the research and 
the discussion that followed are presented in Section 6. Section 7 discusses the conclusion of 
the suggested model and its future application. 

 

2. Relative literature 

Talebi-Ghane et al. (2021) proposed a joint frailty model with cure fraction for repeated 
occurrences and death. The death time could be linked to the underlying recurring process, and 
there is frequently a correlation between the recurrent events' occurrences. Furthermore, there 
are some circumstances in which some patients may recover. Within the context of this study, 
"cured" refers to the possibility that some patients will not die from the disease being studied, 
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nor experience any recurrent events. In order to analyze the recurrent and terminal events, the 
research suggested a combined frailty model in with the inclusion of cure fraction. Also 
estimated the impact of covariates that are on the cure rate and both of the aforementioned 
events simultaneously. The relationship between the recurrences and lifespan times as well as 
the dependence between the intercurrences were examined because this model had two 
independent gamma distributed frailties. Using the maximum likelihood approach for a 
piecewise value and a parameterized base hazard function, the model's variables were 
estimated. A study was used to assess the method, and real data on surgically treated breast 
cancer patients were used to illustrate its features. Furthermore, the interpretability of these 
intricate models may make it challenging to effectively convey results to a wider audience, 
which includes legislators and healthcare professionals. 

 

Tawiah et al. (2020) proposed a time-varying and multiple levels frailty mixture cure 
models for recurring events. A frailty mix cure system has been proposed for these data, 
assuming that each uncured patient's random subject effect remains constant over successive 
intervals between recurrent events. Assuming a model based on multivariate variable in time 
frailty with an AR(1) correlation coefficients structure for each uncured patient, the study 
utilized two new models in a more general setting that address multiple recurrent event data 
originating from multi-institutional trials. An effective calculation process via an EM-type 
technique using REML through the generalized linear mixed methodology to address the 
challenges in parameter estimation caused by these extremely complex correlation structures. 
The models' performances are evaluated through the presentation of simulation studies. The 
findings show a strong positive AR (1) correlation between the frailties over successive gap 
times, suggesting that a constant frailty might not be practical in all circumstances. 
Computational efficiency issues may arise in the real-world application of these models, 
especially when working with sizable datasets or attempting real-time analysis in a clinical trial 
environment. 

 

Tarekegn et al. (2020) proposed approaches to predictive modeling of frailty conditions in 
aging individuals. By using various machine learning techniques to create prediction models 
for frailty conditions, this method aims to close this gap. Using a large administrative health 
database with 1,095,612 people 65 years of age or older, 58 input variables, and 6 output 
variables, the study uses resampling to address data imbalance. Machine learning algorithms 
such as artificial neural networks, GP, SVM, RF, Logistic Regression, and Decision Tree have 
been compared and found to perform differently depending on the type of frailty outcome. 
Importantly, SVM performs better in predicting urgent hospitalization than ANN in terms of 
mortality prediction. The results show that model performance varies across different frailty 
conditions, suggesting that customized decision-support tools could improve the early 
identification and forecasting of frail older adults. The disadvantage is that the lack of 
interpretability may make it more difficult for healthcare professionals to use model results to 
generate practical insights and may restrict their capacity to customize interventions to the 
unique requirements of elderly patients. 
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To facilitate inference and prediction, Boom et al. (2022) presented a novel model that 
treats the number of instances of recur before termination as a random variable. This method 
accounts for variables like frailty that may affect both survival and recurrence by introducing 
a dependency between the two. Defined a combined survival and recurrence distribution, 
adding more dependency via frailty terms. We utilize an autoregressive model in order to 
capture temporal dependence. The method allowed for data-driven subject clustering while 
accounting for population heterogeneity through the use of a non-parametric random effects 
distribution for frailty terms. The model was tested using data on colorectal cancer, comparing 
its results to those of previous approaches and drawing conclusions about the frequency of 
recurrent events. The Gibbs sampler makes posterior inference easier by utilizing reversible 
slice and jump sampling steps. 

 

Examining biological age quantification and death prediction in aging populations has 
made the frailty index technique a central focus in Moguilner (2021) research. The method, 
which is based on the development of health deficits, is useful for capturing differences in 
health status between people of the same age. Nonetheless, the purpose of this study was to 
look into how mortality prediction is affected when age is included in the FI. However, the 
study found that not all FI variables were equally important in predicting mortality, with 
physical function deficits and self-rated health deficits scoring higher. Notably, chronological 
age was found to be the most significant characteristic. Therefore, even though the FI is still 
useful, the study emphasizes how important it is to take chronological age into account when 
interpreting the prognostic implications of a FI. The limitation is that different demographic or 
cultural contexts may have different factors influencing mortality prediction, so the study's 
findings and conclusions might not be applicable everywhere. 

 

Ma et al. (2021) developed a zero-inflated generalized combined frailty framework and a 
sieve maximum probability approach for zero-inflated recurrent events analysis. The model 
offers a great deal of flexibility by defining different transformation functions to formulate the 
impact of variables on both recurrences and the terminal event. Furthermore, the unknown 
cumulative baseline hazard component is approximated using Bernstein polynomials. The 
estimating process is quick to compute and simple to implement. We perform extensive 
simulation studies that show the effectiveness of the method in real-world scenarios. In a 
clinical trial with cardiovascular outcomes, the research finally applied the method to recognize 
recurrences of myocardial infarction. The method's robustness and applicability in capturing 
the complexities of real-world data are its drawbacks, which require additional validation 
through empirical studies and possibly a variety of clinical datasets. 

 

The examined literature lists a number of prevalent flaws in the suggested models for 
examining death and recurrent events. Due to the complex nature and interpretability problems 
with the suggested joint frailty models with cure fraction, one significant limitation is the 
difficulty of effectively communicating results to a wider audience, including legislators and 
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healthcare professionals. Furthermore, computational efficiency problems can occur, 
particularly when working with big datasets or trying to do real-time analysis in clinical trial 
settings, as demonstrated by the multiple levels and time-varying frailty mixture cure models. 
While providing a variety of insights, the machine learning approaches to predictive modeling 
of frailty conditions are not easily interpretable, which could impede healthcare providers' 
capacity to produce useful insights and tailor interventions for senior citizens. Certain models, 
like the zero-inflated generalized combined frailty framework, show promise and are useful in 
describing the intricacies of the real world, but they require further validation using a variety 
of clinical datasets and empirical research. 

 

3. Problem Statement 

The insufficiency of current models in capturing the complex dynamics of recurrent events 
within the framework of survival analysis is the issue addressed by the literature review. While 
frailty models have been widely used in survival analysis to address over-dispersion and 
clustering in data, there is still a notable lack of unified parametric frailty models that are 
specifically designed for recurrent event analysis. The insufficiency of current frailty models 
may limit their applicability in situations where recurrent events are common by failing to fully 
capture the complexities involved (Muscedere et al., 2020). This gap impedes progress in 
comprehending underlying processes and creating customized interventions for researchers 
and practitioners looking for reliable and adaptable tools to analyze time-to-event data with 
recurring events. To improve the analytical toolkit available to researchers in the field, it is 
imperative that parametric frailty models be developed and validated in order to effectively 
handle recurrent events. 

 

4. Methods 

 The research methodology section employs parametric frailty models to investigate and 
model recurrent events through a methodical approach. The dataset, which was acquired from 
phototherapy outcomes, includes vital patient data such as demographics, medical history, and 
time-to-event results. The gamma, inverse Gaussian, and positive stable frailty models three 
parametric frailty models are the mainstays of the methodology. These models offer a 
sophisticated extension to traditional survival analysis techniques by taking into account 
unobservable variability within the population. Model adaptability is enhanced by differential 
evaluations of frailty distributions, which capture subtleties like skewness, temporal 
fluctuations, and heavy-tailed patterns. Furthermore, baseline intensity functions are essential 
to comprehending the underlying risk structures. These include Log-Normal, Gompertz, 
Weibull, Exponential, and Log logistics distributions. AIC, BIC, and log-likelihood ratio tests 
are among the criteria used in the model selection process to make sure the best fitting and least 
expensive model is chosen. With the goal of improving predictive modeling in healthcare 
settings and advancing our understanding of risk factors, this all-encompassing methodology 
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attempts to decipher complex survival patterns associated with recurring healthcare events. 
Figure 1 shows the conceptual diagram of the proposed methodology is given below. 

 

 
Figure 1: The Block Diagram of the Proposed Methodology 

4.1 Data 

The pair 𝑧௣௤ = = (𝑦௣௤, δ௣௤ ) for  event j  ∈ 𝑗௣= {1,..., 𝑛௣ } from subject p ∈ I = {1,..., 

G} is the observation for right-censored survival data, where 𝑦௣,௤ = min(𝑡௣௤ , 𝑐௣௤ ) is the 

minimum between the survival time 𝑡௣௤ and the censoring time 𝑐௣௤, and where δ௣௤= I(𝑡௣௤≤ 

𝑐௣௤)  ) is the event indicator. In the case of gap time, with 𝑦௣௤ = ൫𝑦௣௤ଶ − 𝑦௜௝ଵ൯
௧
 referring to the 

start and the end of the interval q. It's possible that covariate data was also gathered; in this 
instance, 𝑧௣௤ = (𝑦௣௤, δ௣௤ , 𝑥௣௤), where 𝑥௣,௤represents the covariate vector for the 𝑝𝑞-event . 

Moreover, truncation time τ௣are collected in the vector τ if left-truncation is also present.  

4.2 Frailty Model 

The intensity/rate function for a frailty model is 

𝜆௣௤  ൫𝑡ห𝑢௣൯ = 𝑢௣𝜆଴൫𝑡 − 𝑦௣௤ ൯ exp൫𝜷୘𝑿(𝑡)௣௤  ൯   𝑓𝑜𝑟 𝑦௣௤ଵ ≥ 𝑡 ≤ 𝑦௣௤ଶ .    (1) 

 

Where 𝜆଴(. ) is the baseline intensity function, 𝑿(𝑡)𝒑𝒒  is a time-dependent covariate vector 

associated with the vector of regression parameters 𝜷, and 𝑢௣ is the frailty term for the 𝑝୲୦ 

subject. We assume that the 𝑢௣ are independently and identically distributed (𝑖. 𝑖. 𝑑. ) from 

a pre-specified frailty distribution. 
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4.3 Likelihood 

The frailties have been integrated out by averaging the conditional likelihood with 
respect to the frailty distribution, and in the parametric setting, estimation is based on the 
marginal likelihood. The marginal log-likelihood of the observed data, z = {𝑧௣௤;p ∈ I, q ∈ 𝐽௣}, 

can be expressed as follows under the assumptions of non-informative right-censoring and 
independence between the censoring time and the survival time random variables given the 
covariate information. 

𝑙௠௔௥௚(ψ, β, ξ;  z | τ ) = ∑ ቄቂ∑ δ𝑝𝑞 (log (𝜆0(
௡೛

௤ୀଵ 𝑦
𝑝𝑞

)) +  𝑥௣௤
்  β)ቃ +ீ

௣ୀଵ

log ቂ(−1)൫ௗ೛൯𝐿൫ௗ೛൯(∑ Ʌ଴ ቀ𝑦
𝑝𝑞

ቁ exp (
௡೛

௤ୀଵ 𝑥௣௤
்  β))ቃ − log ቂL(∑ Ʌ଴൫τ𝑝𝑞൯exp (

௡೛

௤ୀଵ 𝑥௣௤
்  β)ቃቅ   (1) 

with 𝑑௣ = ෌ 𝛿௣௤
௡೛

௤ୀଵ
  the number of events in the 𝑝௧௛ subject.  𝜆0 (y) and Ʌ0 ( 𝑦௣௤ )  =

∫ 𝜆଴(𝑠)𝑑𝑠
௬೛೜మି௬೛೜మ

଴
 are the baseline intensity and baseline cumulative intensity function, 

respectively.   L(q)(·) is the 𝑞௧௛derivative of the Laplace transform of the frailty distribution 
𝑓൫𝑢௣൯ defined as 

L(s)  =  E [exp(−Us)]  =  ∫ exp൫−𝑢௣𝑠൯ 𝑓൫𝑢௣൯𝑑𝑢௣
ஶ

଴
, s ≥  0.    (2) 

 

4.4 Parameters Estimation 

Maximizing the marginal log-likelihood in Eqn (1) yields estimates of ξ = (𝜓, 𝛽, 𝜉)௧.  
The estimated variance-covariance matrix is derived as the inverse of the observed information 

matrix, evaluated at the parameters estimates 𝛏෠. Standard errors are computed as the square 
roots of the diagonal elements of the observed information matrix. The detailed formulas for 
the first- and second-order derivatives of the log-likelihood with respect to the parameters ξ 
= (𝜓, 𝛽, 𝜉)௧ are provided in Duchateau and Janssen (2008). 

 

4.5 Frailty Prediction  

In addition to parameter estimations, it can occasionally be desirable to predict frailties.  

With 𝑧௣ and 𝜏௣  representing the data and the censoring time for p subject, the frailty term can 

be predicted using the formula 𝑢௣ෞ = E ൫𝑈 |𝑧௣𝜏௣ ; 𝝍෡ , 𝜷෡ ,  𝝃෡. ൯ One can calculate this conditional 

expectation as 

E (U | 𝑧𝑝 , 𝜏𝑝;  ψ, β, ξ) =
௅(೏೛శభ)ቂ∑ Ʌబ൫௬೛೜൯ୣ୶୮ (௫೛೜

೅ 𝛃)
೙೛
೜సభ ቃ

௅(೏೛)ቂ∑ Ʌబ൫௬೛೜൯௘௫௣ (௫೛೜
೅ 𝜷)

೙೛
೜సభ ቃ

 ,    (3) 

which is detailed at [20], along with 

E[U  ௜exp(−Us)]  =  (−1)௜L௜  (s)         (4) 
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4.6 Frailty Distributions 

The research introduces a sophisticated method by using parametric frailty models in 
the context of survival analysis. These models offer a way to account for unobservable 
variability within a population, which makes them a potent extension of conventional survival 
analysis techniques (Cui et al., 2008). The fundamental concept is based on adding frailty 
distributions to the baseline intensity functions, namely the gamma, inverse Gaussian, and 
positive stable frailty. Frailty can be conceptualized as a random variable that represents 
individual differences in susceptibilities to the event of interest, capturing unobserved 
heterogeneity among individuals. Through the incorporation of these frailty distributions, our 
methodology facilitates a more sophisticated comprehension of survival patterns, accounting 
for the innate variability found in the population and offering an enhanced examination of the 
fundamental risk structures. 

A positive skewness is introduced by the gamma distribution, which captures situations 
in which a portion of the population is more susceptible to the event of interest. Conversely, 
the inverse Gaussian frailty model allows for dynamic modeling of frailty in scenarios where 
the event's risk fluctuates over time. With its heavy tails, the positive stable frailty distribution 
is well-suited to containing extreme values and accommodating outliers within the population. 
The methodology takes into account these various frailty distributions, which not only accepts 
the complexity of real-world survival data but also offers researchers a sophisticated toolkit to 
customize their analyses to particular features of the population they are studying (Cui et al., 
2008). 

In our parametric frailty models, the definition of baseline intensity function is a crucial 
aspect that serves as the foundation for understanding the fundamental risk of the event of 
interest. Let   λ ଴ (t; θ) denote the baseline intensity function, where t is the time variable and θ 
is the vector of parameters associated with the chosen frailty distribution. The subscript 0 
emphasizes the baseline intensity functions, acting as a reference before incorporating the 
impact of frailty. 

 

4.6.1 Gamma Frailty 

The gamma frailty model is a parametric method for accounting for unobserved 
heterogeneity within a population. It introduces a frailty term that follows a gamma distribution 
(Mazroui et al., 2013). The frailty term is a useful tool when trying to model complex survival 
data because it acts as a random effect that captures variability not explained by the observed 
covariates. The gamma distribution was selected for the frailty term due to its versatility in 
capturing heterogeneity patterns and its mathematical properties. Shape (α) and scale (β) are 
the two parameters that define the gamma distribution. Within the framework of the gamma 
frailty model, these parameters are essential in determining how frailty is distributed 
throughout the population. The distribution's skewness is determined by the shape parameter, 
which enables it to model both under- and over dispersion. The variability or spread of the 
frailty values is, however, influenced by the scale parameter. The gamma frailty model offers 
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an adaptable framework for taking into account varying degrees and kinds of heterogeneity in 
survival data by varying these parameters. 

The gamma frailty model's adaptability makes it a good fit for situations in which the 
notion that individual risk ratios are constant is dubious. For instance, due to unmeasured 
factors, patients in medical studies may show different susceptibilities to the same event. 
Researchers can explicitly model this unobserved heterogeneity using the gamma frailty model, 
which produces more realistic and accurate survival predictions. 

A probability density function-based random variable U ∼ Gam*(θ) is known as a 
gamma frailty term. 

𝑓(𝑢)  =  
ఏ

ష
భ
ഇ௨

భ
ഇ

షభ
௘௫௣ (ି௨/ఏ) 

௰(ଵ/ఏ)
, 𝜃 >  0,                                           (5) 

where the gamma function is denoted by Γ(•). It is equivalent to a gamma distribution 
Gam (µ, θ) with identifiability fixed at 1 for the mean µ. Then, its variance is θ. The 
corresponding Laplace transform is provided in Eqn. (6) 

𝐿(𝑡)  =  (1 +  𝜃𝑡) ି
భ

ഇ ,    t ≥ 0,                                          (6) 

for r ≥ 1, 

𝐿 (௥)(𝑡)  =  (−1)௥(1 +  𝜃𝑡)ି௥(∏ 1 + 𝑙𝜃௥ିଵ
௟ୀ଴ ) 𝐿(𝑡)                                (7) 

As a result, in Eqn. (5), we have 

𝑙𝑜𝑔  ൣ(−1)௥𝐿 (௥) (𝑡) ൧ =  −(𝑟 +  
ଵ

ఏ
 ) 𝑙𝑜𝑔(1 +  𝜃𝑡)  + ∑ 𝑙𝑜𝑔௥ିଵ

௟ୀ଴ (1 +  𝑙𝜃).               (8) 

In the multivariate case, the gamma distribution, which quantifies the correlation among 
any two event instances from the same cluster, can be calculated as 

𝜏 =  
ఏ 

ఏ ା ଶ 
∈  (0, 1)                                                       (9) 

 

4.6.2 Inverse Gaussian Frailty 

Among our suggested parametric frailty models, the Inverse Gaussian frailty model is 
essential. With regard to the frailty distribution, this model presents an original viewpoint by 
taking the Inverse Gaussian distribution into account. The formulation of the baseline intensity 
function in this model is complex and aims to capture the interaction between time-dependent 
risks and the impact of frailty on survival dynamics. A key feature of the baseline intensity 
function expression is the model's sensitivity to temporal domain variations: the reciprocal of 
the square root of time (t). 

When dealing with situations where the risk of the event of interest is impacted by both 
time-related factors and unobserved individual-specific characteristics, the Inverse Gaussian 
frailty model is especially useful. 
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From a practical standpoint, the Inverse Gaussian frailty model provides a flexible 
instrument for survival analysis, able to adapt to circumstances in which the continuous 
intensity function assumption is not relevant. The Inverse Gaussian distribution's flexibility 
combined with its capacity to capture time-varying frailty improves the model's ability to 
identify intricate survival patterns. This model can be used by researchers to gain subtle insights 
into the heterogeneity within populations, which will enhance their knowledge of survival 
dynamics and make a significant contribution to the larger field of parametric frailty modeling. 

The density of the inverse Gaussian frailty distribution IG*(θ) has is gin in Eqn. (10) 

𝑓(𝑢)  =
 ଵ

√ଶగఏ 
 𝑢 ି

య

మ 𝑒𝑥𝑝 ( − 
(௨ ି ଵ)మ

ଶఏ  
 ) , 𝜃 >  0                               (10) 

1 and θ, respectively, represent the mean and variance. Regarding the Laplace transform, there 
is  

 𝐿(𝑡)  =  𝑒𝑥𝑝 ቂ
ଵ

ఏ
  ൫1 −  √1 +  2𝜃𝑡൯ቃ , 𝑡 ≥  0                          (11) 

Additionally, for r ≥ 1 

L  (୰)(t)  =  (−1)୰(2θt +  1)
ష౨

మ

୔
౨ష(

భ
మ

)ቈටమಐషభቀ౪శ
భ

మಐ
ቁ቉

୔భ/మቈටଶ஘షభቀ୲ା
భ

మಐ
ቁ቉

L(t),     

  (12) 

where P is the Bessel function, 

𝑃𝛾(𝜔) =  
ଵ 

ଶ
∫  𝑠ఊିଵஶ

଴
 𝑒𝑥𝑝 ቂ− 

ఠ 

ଶ
 ቀ 𝑠 +  

ଵ

௦
  ቁቃ 𝑑𝑠, 𝛾 ∈  𝑅, 𝜔 >  0            (13) 

For any distribution for which the moments of U | 𝑧௜ , 𝜏 ௜; ψ, β, ξ,, the conditional frailty 
given the data, are known, the proof of this result outlines a general creative method to obtain 
the derivatives of the distribution of the Laplace transform 

  Pଵ/ଶ (ω) = ට
 ஠  

ଶன
 exp(−ω),                            (14)      

we have 

𝑙𝑜𝑔 ൣ(−1)௥𝐿  (௥)(𝑡)൧ =
 ି ௥

ଶ
  𝑙𝑜𝑔(2𝜃𝑡 +  1) + 𝑙𝑜𝑔 ቆ𝑃

௥ିቀ
భ

మ
ቁ
(𝑧)ቇ − ቂ

ଵ

ଶ
log ቀ

గ

ଶ௭ି௭
ቁቃ +

ଵ

ఏ
൫1 − √1 + 2𝜃𝑡 ൯,                                                                                                                (15) 

with 𝑧 =  ට 2𝜃ିଵ(𝑡 +  
ଵ 

ଶఏ
)                                                               (16) 

An inverse Gaussian distributed frailty with multivariate data is given in Eqn. (17) 

𝜏 =  
ଵ

ଶ
− 

ଵ

ఏ
 +  2 

௘௫௣(ଶ/ఏ)

ఏమ
 ∫

௘௫௣(ି௨)

௨

ஶ

ଶ/ఏ
   𝑑𝑢 ∈  (0, 1/2)               (17) 
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4.6.3 Positive Stable Frailty  

Among our suggested parametric frailty models, especially designed for recurrent 
events analysis, the Positive Stable frailty model stands out as a unique and potent component. 
A strong framework to capture the underlying heterogeneity among subjects is provided by the 
Positive Stable frailty distribution in the context of recurrent events, where individuals may 
experience the event of interest more than once (Huang & Liu, 2007). An integral involving 
the Positive Stable distribution characterizes the baseline intensity function for this model, 
adding a degree of complexity appropriate for managing recurrent event data. The Positive 
Stable distribution is a useful tool in scenarios where outliers or high-impact events have a 
significant impact on the recurrence pattern because of its heavy tails, which enable it to 
accommodate extreme values. 

The study of non-Gaussian and heavy-tailed frailty effects in the context of recurrent 
events is made possible by the Positive Stable frailty model, which offers a sophisticated insight 
into the variation in subjects' susceptibility to the event occurring again. The complex 
relationship between the Positive Stable frailty and the underlying risk structure is captured by 
the integral representation of the baseline hazard. We enable researchers to identify and 
interpret intricate patterns of recurrence by integrating this model into our parametric 
framework, which advances our understanding of the dynamics surrounding repeated events in 
the study population. 

Haugaard presents a family of positive stable distributions with two parameters: an 
index α < 1 and a scale δ > 0. The positively stable frailty distribution PS* (w) with w = 1 − α 
is obtained by imposing δ = α. 

𝑓(𝑢)  =
 ି ଵ

గ௨
  ∑

௰(௣(ଵ ି ௪)ା ଵ)

௣!
ஶ
௣ୀଵ  (−𝑢௪ିଵ)௣𝑠𝑖𝑛 (1 − 𝑤)𝑝𝜋,         𝑤𝜖(0,1)            (18) 

Unlike the probability density function, the corresponding Laplace transform has a very 
straightforward form. 

𝐿(𝑡)  =  𝑒𝑥𝑝 (−𝑡ଵି௪),    𝑡 ≥ 0,                             (19) 

𝐿 (௥)(𝑡)  =  𝑟((1 − 𝑤)𝑡ି௩)௥[∑ 𝛺௥,௠𝑡ି௠(ଵି௩)]𝐿(𝑡)௥ିଵ
௠ୀ଴ ,               (20) 

where the polynomials of degree m, denoted Ω୰,୫ ,are provided recursively by 

Ω ௥,଴ =  1,  

Ω௥,௠ =  Ω௥ିଵ,௠ +  Ω௥ିଵ,௠ିଵ ቂ
௥ ି ଵ

ଵ ି ఔ 
 −  (𝑟 −  𝑚)ቃ , 𝑚 =  1, . . . , 𝑟 −  2,       (21) 

 Ω௥,௥ିଵ =  (1 −  𝜈)ଵି௥  
 ௰(௥ ି (ଵ ି ఔ))

௰(ఔ)
                           (22) 

It follows, 

𝑙𝑜𝑔 ൣ(−1)௥𝐿 (௥) (𝑡)൧ =  𝑟 [𝑙𝑜𝑔(1 −  𝑤) −  𝑤𝑙𝑜𝑔(𝑡)] +  𝑙𝑜𝑔 [∑ 𝛺௥,௠𝑡ି௠(ଵି௪)௥ିଵ
௠ୀ଴ ]  − 𝑡ଵି௪   (23) 

The Kendall's tau for positive stable distributed frailties with grouped data is 

τ =  w ∈  (0, 1)                                    (24) 
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4.7 Distributions of Baseline Intensity 

Baseline intensity functions are essential for capturing the underlying risk of an event 
happening at any given time in parametric frailty models for recurrent events. The 
instantaneous failure rate at time t, in the absence of any additional factors or frailty, is referred 
to as the "baseline intensity". It stands for the inherent risk that an event will occur at a specific 
time, independent of personal traits or outside factors. This paper examines five different kinds 
of baseline intensity functions, each with its own parametric form. These encompass the Log-
Normal, Gompertz, Weibull, Exponential, and Log logistics. The Gompertz and Weibull 
baselines, for instance, add shape and scale parameters to capture various hazard dynamics, 
whereas the exponential baseline intensity assumes a constant intensity rate over time. The 
selection of baseline intensity functions takes into account the variety of ways that event risks 
may appear when frailty is absent. This gives a thorough basis for modeling recurrent events 
and helps to guide the addition of frailty terms to the suggested parametric models (Munda, 
Rotolo, & Legrand, 2012). 

Table 1: Five Distinct Baseline Intensity Functions 

Distribution  𝝀𝟎(𝒕) 
Ʌ𝟎(𝒕) = න 𝝀𝟎(𝒔)𝒅𝒔

𝒕

𝟎

 
Parametric Space 

Exponential 𝜆 𝜆𝑡 𝜆 > 0 
Weibull 𝜆 β𝑡(ஒିଵ) 𝜆𝑡ఉ  𝜆, β > 0 

Gompertz 𝜆 [𝑒𝑥𝑝 (𝛾𝑡)] 
 

𝜆

𝛾
[𝑒𝑥𝑝 (𝛾𝑡) − 1] 

𝜆, 𝛾 > 0 

Log-Normal 
𝜙 ൬

log(𝑡) − 𝜇
𝜎

൰

𝜎𝑡 ൤1 − 𝜙 ൬
log(𝑡) − 𝜇

𝜎
൰൨

 
-logቂ1 − 𝜙 ቀ

௟௢௚(௧)ିఓ

ఙ
ቁቃ 𝜇ЄR, σ>0 

Log-Logistics exp(𝛼)𝜅𝑡఑ିଵ

1 + exp(𝛼)𝑡఑
 

log[1 + 𝑒𝑥𝑝(𝛼)𝑡఑] 𝛼ЄR, 𝜅 > 0 

 

Table 1 shows the parametric distributions for the baseline intensity that are available. 
The special design of the suggested models for the analysis of recurrent events, which 
emphasizes an emphasis on comprehending and forecasting the occurrence of repeated events 
over time, forms the conceptual basis of these models. Within the field of survival analysis, 
recurring events refer to situations in which subjects encounter a particular event more than 
once during the course of the study. The models incorporate frailty terms and time-dependent 
intensity functions to intricately capture the temporal dynamics of event incidences. This 
design provides a thorough method that goes beyond the traditional study of individual events 
by enabling a nuanced investigation of the ways in which different factors affect the frequency 
and timing of recurrent events. The models are especially relevant in healthcare settings, where 
patients might experience recurrent medical episodes. They are intended to improve the ability 
to manage healthcare resources and anticipate recurrent event patterns more precisely. 
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The process of estimating parameters in the models that have been suggested is centred 
on optimizing the marginal log-likelihood, which represents the total likelihood of observing 
the provided data in the model that has been assumed. Finding the parameter values that 
produce the highest likelihood for the observed data depends critically on this optimization. 
Crucially, the models can handle incomplete data with ease: they can handle data that is 
potentially left-truncated (observations are available only for events occurring before a specific 
time) or right-censored (where event times are known only to occur after a certain point). These 
intricacies are considered during the optimization process, guaranteeing reliable parameter 
estimation even when there is insufficient data. 

Next, the logarithm of the product of these likelihoods for each individual, or the 
marginal log-likelihood, is maximized. In light of the presumptive model, this maximization 
looks for parameter values that maximize the likelihood of the observed data. 

The models can accommodate data that has been right-censored and may have been 
left-truncated, demonstrating their flexibility and suitability for real-world scenarios where 
complete event time information may be missing. This flexibility is especially useful in 
industries like healthcare, where follow-up times can vary and events happen sometimes. To 
sum up, the process of estimating the models' parameters, which maximizes the marginal log-
likelihood while managing incomplete data, guarantees the models' suitability and resilience in 
scenarios where event times are observed partially or imprecisely. 

 
4.8 Models Selection Criteria 

In order to determine which parametric frailty model best fits the observed data, a 
number of models are evaluated. The BIC, which penalizes complex models to avoid over 
fitting, is a crucial factor in model selection, much like the Akaike Information Criterion. 
However, BIC has a more significant penalty for more parameters, which makes it particularly 
useful in situations where sample sizes are smaller. The BIC is computed by multiplying the 
number of parameters by the negative log-likelihood of the model plus half of the log of the 
sample size. This penalty term discourages the addition of needless parameters that might not 
have a major impact on the explanatory power of the model, reflecting a stronger preference 
for parsimonious models. Practically speaking, the BIC is especially helpful when researchers 
must carefully balance model fit and complexity, especially when there is a lack of data. The 
BIC formula's penalty term makes sure that models with more parameters are not given 
preference unless the complexity is justified by the improvement in fit. As a result, models with 
lower BIC values represent a better balance between simplicity and goodness of fit, which is 
consistent with the main objective of model selection. The log-likelihood ratio test, AIC, and 
BIC work together as a complete toolkit during the model selection process. AIC and BIC offer 
quantitative metrics that direct the model selection process, whereas the log-likelihood ratio 
test provides a formal statistical comparison of nested models. The model selected is the one 
that strikes the best balance between accurately capturing the underlying patterns in the data 
and avoiding needless complexity. A rigorous and well-informed model selection process that 
takes into account statistical significance as well as the inherent trade-off between model fit 
and complexity is ensured by this multi-criteria approach. 
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𝐵𝐼𝐶 = −2 ⋅ 𝑙𝑜𝑔(−𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 𝑝𝑛 ⋅ 𝑙𝑛(𝑠𝑧)                      (25) 

 −2⋅log-likelihood is twice the negative log-likelihood of the model. 

 pn is the parameter numbers. 

 sz is the sample size. 

With smaller sample sizes, the penalty term is especially sensitive to over fitting and 
provides a stronger penalty for more parameters. It is proportional to the logarithm of the 
sample size. Lower BIC values indicate models that better balance explaining the data and 
avoiding needless complexity. The BIC equation, then, quantifies the trade-off between model 
fit and complexity. 

The model complexity and goodness of fit are intended to be balanced by the Akaike 
Information Criterion (AIC). In order to discourage over fitting, it acts as a tool for model 
selection by penalizing the addition of excessive parameters. The Eqn. (27) below is used to 
calculate the AIC: 

𝐴𝐼𝐶 = −2 ⋅ 𝑙𝑜𝑔(−𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 2 ⋅ 𝑝𝑛                     (26) 

The AIC formula combines a penalty term (2⋅p) proportional to the number of 
parameters with a term (negative log-likelihood) that assesses how well the model fits the data. 
Overly complicated models are discouraged by the penalty, which indicates a preference for 
simpler models that can explain the data adequately. Finding models that balance goodness of 
fit and model simplicity is the main objective. 

Better-fitting models are generally indicated by lower AIC values. In line with the 
statistical modeling principle of parsimony, the preference for lower AIC values highlights the 
AIC's function in choosing models that provide a favourable compromise between explaining 
the observed data and avoiding needless complexity. 

5. Simulation Study 

In this section, we generate data to assess the practical performance of the developed method 
in finite samples.  

 

5.1 Simulation Settings 

For each subject 𝑖 we generated the frailties with gamma, Inverse Gaussian, Positive 
the correspondence distribution parameter to achieve the Kendell taues coefficients. A right-
censoring variable (𝐶௣  =  5) was set at a fixed value in order to have on average a third of 

censored data. The binary explanatory variables  𝑥௜ଵ, 𝑥௜ଶ , were generated from a Bernoulli 
distribution with 𝑝𝑟 =  0.5 . We set  𝛽ଵ  =  1 , and  𝛽ଶ  =  −0.5 . Additional information 
regarding the steps for generating the simulated data can be referenced in Bedair et al. (2016). 
In the initial two settings, we generated data with a substantial and positive low and moderate 
dependency between recurrent events (Kendell’s tau= 0.10, and 0.5). In the third setting, the 
frailties were negatively dependent (Kendell’s tau=0-.5). 
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5.2 Simulation Results 

Table 2 provides the results for a sample size of 𝑁 =  400, whereas the outcomes for 
a sample size of 𝑁 =  1000 are summarized in Table 3. The death rate remains around two-
thirds, and the average numbers of observed recurrent events per subject are 1.25 and 0.25 in 
the conducted simulation studies for the respective sample sizes. Approximately 25% and 80% 
of the subjects did not experience any recurrent events in the two sample sizes, respectively. 
For each of these sample sizes, we examine low, moderate (positive and negative) frailty 
association scenarios. 

Upon careful scrutiny, it becomes apparent that, in all three settings, parameter 
estimates for our proposed models (gamma, inverse Gaussian, and Positive stable) are precisely 
estimated. The empirical biases of the estimates are negligible, with only minor biases (around 
5%) observed in all settings. The coverage probabilities closely adhere to the nominal level of 
95%. The simulation study shows that the baseline intensity  parameters, regression 
coefficients and variance parameters from the proposed method were well estimated with small 
MSE values at all settings which implies the performance of the estimates is good with 
moderate samples. 

Table2: Simulation outcomes for frailty distributions (gamma, inverse Gaussian, and positive stable) 
with a Weibull baseline intensity, considering a total of 400 subjects and 500 events. 

 Gamma Inverse Gaussian  Positive stable 

Parameter |Bias| MSE CP |Bias| MSE CP |Bias| MSE CP 

Theta =0.4 0.0102 0.0030 0.9553 0.0301 0.0200 0.9541 0.0314 0.0075 0.9516 

Lambda =0.25 0.0063 0.0018 0.9558 0.0280 0.0126 0.9527 0.0310 0.0056 0.9498 

beta1=1 0.0262 0.0014 0.9547 0.0278 0.0096 0.9528 0.0284 0.1153 0.9435 

beta2=-0.5 0.0128 0.0282 0.9552 0.0323 0.0483 0.9492 0.0308 0.0491 0.9458 

Kendall's Tau= 0.10 0.0028 0.0121 0.953 0.0270 0.0207 0.9504 0.0293 0.0303 0.9508 

Setting 2 

Theta =0.4 0.0107 0.0132 0.9495 0.0304 0.0224 0.9492 0.0300 0.0096 0.951 

Lambda =0.25 0.0071 0.0098 0.9517 0.0264 0.0472 0.9532 0.0232 0.0139 0.9516 

beta1=1 0.0281 0.0488 0.9518 0.0261 0.0200 0.9535 0.0265 0.0065 0.9448 

beta2=-0.5 0.0159 0.0209 0.9472 0.0239 0.0127 0.9557 0.0242 0.0042 0.946 

Kendell’s tau= 0.5 0.0153 0.0131 0.9526 0.0245 0.0092 0.9551 0.0271 0.0030 0.9451 

Setting 3 

Theta =0.4 0.0117 0.0120 0.948 0.0285 0.0074 0.9494 0.0296 0.0778 0.9499 

Lambda =0.25 0.0078 0.0174 0.9485 0.0570 0.0031 0.9565 0.0291 0.0305 0.9494 

beta1=1 0.0376 0.0082 0.9511 0.0439 0.0019 0.9531 0.0228 0.0192 0.9565 

beta2=-0.5 0.0176 0.0052 0.9485 0.0390 0.0014 0.9556 0.0262 0.0139 0.9531 

Kendell’s tau= -0.5 0.0226 0.0038 0.9502 0.0342 0.0293 0.9526 0.0239 0.0719 0.9556 
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Table3: Simulation results for the gamma, inverse Gaussian, and positive stable frailty distributions 
and Weibull bassline intensity for number of subject n=1000 and number if events=250. 

frailty distribution Gamma Inverse Gaussian Positive stable 

Parameter |Bias| MSE CP |Bias| MSE CP |Bias| MSE CP 

Setting1  

Theta =0.4 0.0114 0.0121 0.9525 0.0300 0.0304 0.9526 0.0248 0.0309 0.9532 

Lambda =0.25 0.0071 0.0075 0.9525 0.0321 0.0193 0.9547 0.0295 0.0227 0.9535 

beta1=1 0.0324 0.0056 0.9486 0.0261 0.0140 0.9523 0.0295 0.0507 0.9557 

beta2=-0.5 0.0147 0.1185 0.9515 0.0277 0.0744 0.9493 0.0291 0.0207 0.9551 

Kendall's Tau= 0.10 0.0029 0.0492 0.9522 0.0286 0.0309 0.9522 0.0265 0.0132 0.948 

Setting 2 

Theta =0.4 0.0113 0.0199 0.9495 0.0303 0.0092 0.9492 0.0244 0.0234 0.9515 

Lambda =0.25 0.0066 0.0138 0.9474 0.0256 0.0239 0.9541 0.0301 0.0744 0.9520 

beta1=1 0.0287 0.1403 0.9534 0.0197 0.0099 0.9601 0.0289 0.0311 0.9456 

beta2=-0.5 0.0159 0.0521 0.9519 0.0258 0.0061 0.9537 0.0265 0.0191 0.9535 

Kendell’s tau= 0.5 0.0144 0.0324 0.9509 0.0260 0.0045 0.9536 0.0291 0.0139 0.9456 

Setting 3 

Theta =0.4 0.0111 0.0037 0.9548 0.0281 0.0250 0.9552 0.0271 0.0082 0.9525 

Lambda =0.25 0.0069 0.0023 0.9499 0.0276 0.0158 0.9495 0.0271 0.0052 0.9525 

beta1=1 0.0252 0.0017 0.9501 0.0339 0.0120 0.9509 0.0307 0.0038 0.9486 

beta2=-0.5 -0.0129 0.0352 0.9504 0.0262 0.0604 0.9531 0.0281 0.0972 0.9515 

Kendell’s tau= -0.75 -0.0248 0.0151 0.9531 0.0260 0.0259 0.9505 0.0274 0.0381 0.9522 

 

6. Real Application and Results  

 This section reports on our methodical investigation and modelling of gap time between 
recurrent events in healthcare using parametric frailty models. Utilizing data simulated, with 
exactly the same characteristics as the real data used in the photherapy dataset that could not 
be made publicly available. We conducted a retrospective assessment of the response to 
phototherapy for atopic eczema, focusing on the types of phototherapy, namely NB-UVB (A), 
UVA1 (C), or PUVA (B). We analyzed 1532 (88%) A, 83 (4%) B, and 129 (6%)  Courses 
administered to 1303 patients. These courses were distributed across four units with A and B 
used in all treatment units, while C was exclusively available in unit (A). 

We categorized outcomes recorded as a favourable outcome and not favorable. The 
primary outcome measure assessed was the probability of a favorable outcome in relation to 
the number of treatments per course. Various covariates (refer to Table 1) potentially 
influencing treatment efficacy were examined. We employed chi-square and t-student tests for 
comparing proportions of discrete covariates and means of continuous covariates, respectively. 
To compare "survival curves" we utilized the log-rank test. The final risk prediction model 
with multi-variables was established through a backward selection process, commencing with 
the full model encompassing all covariates. The iteration continued until all covariates in the 
model achieved statistical significance at the 0.05 level. The frailty models, which include 
gamma, inverse Gaussian, and positive stable, enhanced by various baseline intensity 
functions, including Log-Normal, Gompertz, Weibull, Exponential, and Log logistics 
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distributions, offer a comprehensive comprehension of the survival patterns linked to recurrent 
medical procedures. The selection of the most suitable frailty and models was based on a 
comparison of the Akaike Information Criterion (AIC) and the Bayesian. By following this 
model selection procedure, we determine which model is the most cost-effective and 
appropriate for our dataset. The talk that follows explores the main findings and provides 
information about how different frailty distributions and baseline intensity functions can be 
interpreted and adjusted, which enhances our understanding of the complex dynamics that 
underlie recurring healthcare events. 

6.1 Participants 

The majority of Participants, comprising 679 (74%), underwent a single course, 175 
(17%) had two courses, 46 (5%) had three courses, and only 37 (4%) underwent more than 
three courses. The primary outcomes are summarized in Table 4. Across A, B, C, and D 
treatment centers, a total of 763 (59%), 272 (20%), 138 (10%), and 130 (9.9%) courses were 
conducted, respectively, with corresponding proportions of favorable outcomes at 63.3%, 
74.3%, 63%, and 69.2%. Additional features for participants  are presented in Table 4. 

Table 4. Summary of data on most important variables assessed for possible effects on 
treatment outcome when treating eczema with the phototherapies. 

 Courses frequency  Distribution of courses by the outcomes P. value  
 

Studied Covariates 1303 (%) Not good outcome 
441 (33%) 

Good outcome 
862 (66%) 

Treatments per course  (27.3, 0.42) d  (17, 0.654)d (32.26, 0.46)d 0.001a 
0.001b 

High 656 (50.00) 90 (13.72) 566(81.28)  
Low  657 (50.00) 351 (53.42) 296(46.58)  
Gender    0.925b 

0.444c 
Female 689 (53.00) 234 (33.96) 455 (66.04)  
Male 614 (47.00) 207 (33.71) 407 (66.29)  
Course age  (34.12, 0.44) d (32.63, 0.76)d (34.88, 0.55)d 0.020b 

0.728c 
High  653 (50.00) 202(30.93) 451 (69.07)  
Low  620 (50.00) 239 (36.77) 411 (31.54)  
Erythema    0.004b 

0.597c 
No 1261 (97.00) 435 (34.50) 826 (65.50)  
yes 42 (3.00) 6 (14.29) 36 (85.71)  
Skin Type    0.993b 

0.001c 
I 875 (67.00) 297 (33.94) 578 (66.33)  
II 401 (30.00) 135 (33.36) 266 (66.44)  
III 27 (03.00) 9 (33.84) 18 (66.67)  

Treatment Centre    0.007b 
0.001c 

I 763 (59.00) 280 (36.70) 483 (63.30)  
II 272 (20.00) 70 (25.74) 202 (74.26)  
III 138 (11.00) 51 (36.96) 87 (63.04)  
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IV 130 (10.00) 40 (30.77) 90 (69.23)  
Treatment Type    0.005b 

0001c 
A 61(04.00) 22 (36.07) 39 (63.93)  
B 86(07.00) 43 (50.00) 43 (50.00)  
C 1156(89.00) 376 (32.53) 780 (67.47)  
Course duration (mean, SD) (86.42 ,1.50)d (65.37, 2.48)d (97.19, 1.77)d 0.001b 

0.001c 
High  656 (50.50) 128 (19.00) 528 (80.49)  
Low  647 (49.50) 313 (48.38) 334 (51.62)  
Treatment A doses      0.001b 

0.001c 
High  576 (44.21) 53 (9.20) 523 (90.8)  
Low 575 (44.13) 320 (55.65) 255 (44.35)  
No A treatment 152 (11.67) 68 (44.74) 84 (55.25)  
Treatment B doses      0.218b 

0.237c 
High  31 (2.38) 8 (25.81) 23 (74.19)  
Low  30 (2.30) 14 (46.67) 16 (53.33)  
No B treatment 1242 (95.32) 419 (33.74) 823 (66.26)  
Treatment C doses      0.001b 

0.634c 
High  43 (3.30) 12 (27.91) 31 (72.09)  
Low  43 (3.30) 31 (72.09) 12 (27.91)  
No C 1217 (93.40) 398 (32.70) 819 (67.30)  
Cumulative treatment A    0.001b 

0.001c 
High ≥ 48m 654 (50.19) 172 (26.30) 482 (73.70)  
Low 642 (49.27) 266 (41.43) 376 (58.57)  
No A treatment 7 (0.54) 3 (42.86) 4 (0.31)  
Cumulative treatment B    0.830a 

0.095b 
High  185 (14.20) 65 (35.14) 120 (64.86)  
Low 418 (32.08) 137 (32.78) 281 (67.22)  
No B treatment 700 (53.72) 239 (34.14) 461 (65.85)  
Cumulative treatment C    0.001a 

0.001b 
High  99 (7.6) 35 (35.35) 64 (64.65)  
Low 107 (8.2) 60 (56.07) 47 (43.93)  
No C treatment 1097 (84.2) 346 (31.54) 751 (68.46)  

(*) median, (a) t-test, (b) chi-square test, (c) log-rank test, (m) median, (d) (mean, SD). 

 

6.2 Model Selection Criteria and the Frailty Variance 

 Table 5 provides a summary of the AIC and BIC values for all 15 candidate models 
considered in the analysis. Researchers can utilize this table to compare and select the most 
appropriate distribution, considering the balance between model fit and complexity, as 
reflected in the AIC and BIC values. In this specific application, the Weibull baseline appears 
to be a promising candidate. The Weibull baseline with a gamma frailty model exhibited the 
highest log-likelihood value and the lowest AIC and BIC values, indicating a superior fit to the 
data compared to other frailty models. In this model, the frailty's variance was estimated to be 
1.261 (95% CI 0.85–1.93), implying the existence of unexplained heterogeneity in recurrent 
events that could not be elucidated by the independent variables in the model. 
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Table 5: Model Comparison of the Proposed Method 

 Gamma Inverse Gaussian Positive Stable 
AIC BIC AIC BIC AIC BIC 

exponential 681.120 692.889 690.160 702.047 699.373 711.318 
Weibull 681.041 690.657 689.213 698.722 699.321 708.877 
gompertz  683.261 695.032 691.253 703.140 701.371 713.316 
loglogistic  692.036 703.805 698.979 710.866 702.841 714.787 
lognormal  685.637 697.407 692.780 704.667 697.479 709.424 

 

6.3 Results of Frailty Models  

Table 6 presents the results for applying the final parametric frailty model with gamma 
frailty and Weibull baseline intensity using the number of treatment courses as a time scale. It 
is noteworthy that treatment B exhibited a higher probability of a positive outcome compared 
to other phototherapies, even though it is typically used as a second- or third-line treatment. 
Among the four phototherapy units, one (II) exhibited better outcomes, possibly attributed to 
its status as the second-longest established unit, with center I being the longest-established and 
the sole unit offering treatment C, a treatment reserved for challenging cases.  

A recorded painful erythema was associated with more favorable outcomes, although 
this effect disappeared when considering the number of treatments, suggesting that erythema 
might serve as a marker for receiving sufficient treatments. Older patients appeared to fare 
better until accounting for the number of treatments, possibly indicating a lower likelihood of 
early discontinuation. 

Lower cumulative exposures to treatment A, B, and C were linked to better responses, 
possibly due to continued attempts with treatments for those showing poor initial response or 
a potential tachyphylaxis effect with reduced efficacy over repeated courses. 

In this population with low sun-reactive skin phototypes (I to III), those with phototype 
II were slightly more likely to respond, and although not statistically significant, those with 
phototype III may have performed better. While skin phototype is loosely related to minimal 
erythemal dose, which determines starting doses, it is associated with tolerance development.  

Table 6. Relative risks (RR) with 95% confidence intervals (CI) for potential risk factors, 
adjusted for age and sex variables, from gamma frailty models with a Weibull baseline intensity 
for the current dose. 
 

Studied Covariates P. value  
 

95% CI 

Skin Type 0.001  
II vs I  1.33[1.09, 1.62] 
III vs I  1.47[0.77, 2.80] 
Treatment Centre 0.001  
II vs I  2.03[1.64, 2.51] 
III vs I  1.28[0.95, 1.72] 
IV vs I  1.11[0.84, 1.47] 
Treatment Type 0001  
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B vs A  0.19[0.11, 0.33] 
C vs A  0.29[0.19, 0.43] 
Course duration (mean, SD) 0.001  
Low vs High   11.13[8.91, 13.90] 
Treatment A doses   0.001  
Low vs High   4.09[3.23, 5.19] 
Cumulative A treatment  0.001  
Low vs High   2.07[1.73, 2.47] 
Cumulative C treatment 0.001  
Low vs High   2.47[1.34, 4.54] 

 

 

Figure 2: Graphical Illustration of Predicted Frailty Value 

Figure 2 illustrates the graphical representation of predicted frailty values for a subset 
of patients. Each line depicted in the graph may represent a unique participant, with the lines 
likely reflecting the predicted frailty values derived from a gamma frailty model. 

 

Table 7: Comparison Table of Proposed Model with other Methods 

Metrics Proposed Parametric 
Frailty Models 

Cox Proportional- 
Hazards Model 

Kaplan-Meier 
Estimator 

Model Flexibility High Semi-Parametric Non-Parametric 
Handling of Covariates Yes Yes Limited 
Assumption about 
Hazard Shape 

Flexible Proportional Non-Parametric 

Frailty Distributions  Gamma, Inverse Gaussian, 
Positive Stable 

N/A N/A 

Performance Metrics 
(AIC, BIC, Log-
Likelihood) 

Available Available Not Applicable 

Survival Curve 
Estimation 

Yes No Yes  

Handling of Censored 
Data 

Yes Yes Yes 

Interpretability              Dependent on chosen frailty 
distribution 

Hazard ratios 
provided 

Visual survival curves 

 The Cox Proportional-Hazards Model, the Kaplan-Meier Estimator, and the proposed 
parametric frailty models are just a few of the survival analysis models whose salient features 
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are highlighted in the Table 3. The suggested parametric frailty models exhibit great 
adaptability, supporting a range of frailty distributions, and provide performance measures for 
model assessment, including AIC and BIC. 

 
7. Discussion and Conclusion  

We introduced parametric frailty models to investigate relevant risk factors associated 
with recurring outcome events in a phototherapy study. The proposed models offer flexibility, 
featuring five distributions for the baseline intensity and three frailty distributions. Parameter 
estimation is achieved by maximizing the marginal log-likelihood. Emphasizing the 
importance of performance metrics in model evaluation, particularly AIC and BIC, our study 
guides researchers in selecting the most suitable model, considering the delicate balance 
between complexity and goodness of fit. The presented models not only shed light on the 
versatility of parametric frailty models, showcasing their compatibility with various frailty 
distributions but also provide performance metrics for a thorough model assessment. 
Collectively, these elements enhance the analytical framework, aiding in the identification of 
optimal models and a deeper understanding of survival patterns associated with recurring 
events in various medical applications.  

 The models' suitability for use in future projects will be improved by additional 
investigation and validation across a variety of datasets and disciplines. Including time-varying 
covariates and integrating machine learning techniques offer viable ways to improve the 
predictive supremacy of the models. The suggested parametric frailty models can be improved 
upon and expanded upon thanks to the ongoing development of healthcare data analytics, 
which will ultimately improve patient care and personalized medicine. In conclusion, this study 
presents and clarifies the use of parametric frailty models in the context of recurrent event data 
analysis, specifically in the medical field. The suggested models offer a sophisticated 
framework for capturing unobservable heterogeneity and improving the understanding of 
survival patterns. They incorporate various frailty distributions, including gamma, inverse 
Gaussian, and positive stable. The models' adaptability is enhanced by the assessment of 
differential frailty distributions, which allows researchers to customize analyses to particular 
population characteristics. When combined with survival curve estimation, performance 
metrics like AIC and BIC allow for a thorough evaluation of the effectiveness of the model. 

In summary, we implemented a series of parametric frailty models to analyze gap time of 
recurrent events. The frailty model indicated the presence of unobserved subject-specific risk 
factors in the study, even after accounting for all the known risk factors in the model. The risk 
prediction model, focusing on recurrent events, incorporates more information about the 
occurrence of an event compared to a model based solely on the data from the first event. These 
risk prediction models can categorize participants into different risk levels, aiding in the 
targeted application of preventive therapies for recurrent events. Improving the models' 
relevance for future projects involves conducting additional investigation and validation across 
a range of datasets and applications, encompassing fields such as medicine, engineering, 
business, and social sciences, among others. 
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