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Abstract

Multi-state models (MSMs) are an extension of classical survival
analysis, which allows adjustment to the prediction of survival duration of
the patient in the course of time by incorporating new information regarding
the progression of the medical history and to better understand how
prognostic factors influence the different phases of the disease/recovery
process. In recent years, a wide range of medical situations have been
modelled using MSMs such as problems following lung transplantation,
problems following heart transplantation, hepatic cancer, HIV infection and
AIDS. Disease progression model is needed for understanding the
progression of disease and important in retrospective cohort analyses. In this
paper five states progression model is suggested. The suggested model is
studied in the case of continuous time non-homogeneous multistate model
based on non-homogeneous Markov processes. A parametric time-
dependent multistate model are considered to fit a non-homogeneous
Markov process where transitions are specified by the hazard of exponential
and Weibull distribution. The parameters of the suggested models are
estimated by ML method. An application using dataset containing histories
of bronchiolitis obliterans syndrome (BOS) from lung transplant recipients
is applied using the suggested models. The BOS data set is provided in the
R package msm.

Keywords:

Markov processes, Non-Markov processes, Interval-censored, Staged

progression model, Parametric multi-state models.
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1. Introduction

In most longitudinal medical studies on progression of healthy
individuals to chronic diseases, such as cancer, AIDS, and dementia, the
nature of the development is often expressed in terms of distinct health

stages, where patients are observed at certain time points.

MSMs are considered as generalizations of survival and competing
risks models, are the most common models for describing longitudinal
failure time data. These models have wide application in modeling the
complex evolution of chronic diseases. In epidemiology, multi-state models
are used to represent the trajectory of subjects through different discrete

states, generally including clinical disease and death.

MSMs are increasingly being used to model complex diseases. By
modeling transitions between disease states, accounting for competing
events at each transition helps in understanding patient trajectories and how

risk factors impact over the entire disease pathway.

Multi-state interval-censored data are usually handled by time
homogenous Markov models. However, the assumption of time
homogeneity would be inappropriate if the disease process is heavily
dependent on the time scale considered in the model. In this case, a non-
homogeneous Markov assumption is assumed to model the multi-state

process.
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For the analysis of time-homogeneous multi-state processes,
Kalbfleisch and Lawless (1985) introduced the MSMs. They developed a
general procedure for obtaining maximum likelihood estimates of the model
parameters. Kay (1986) proposed a similar method that calculates the first
and second order derivatives of some particular multi-state processes and
provided methods for hypothesis testing and model diagnostics. Satten and
Longini (1996) developed a method for fitting these models when states are
subject to measurement errors. Commenge (1999) discussed some
assumptions for multi-state models in epidemiology and considered
different inference approaches. Lintu et al. (2022) estimated covariate
effects on the bidirectional transition rates for a continuous time
homogeneous multi-state Markov model with three transient states, and an

absorbing state (death) for kidney disease progression.

For time-dependent multi-state processes, Kalbfleisch and Lawless
(1985) suggested two methods to time-dependent processes. The first
method uses piecewise-constant hazards; in this case the hazards are
constant within specified intervals, but can change for different intervals.
The second method focuses on a special case in which the non-homogeneity
is due to a time-varying multiplicative change in the matrix of transition
intensities. Omar et al. (1995) constructed three-state model with simple
parametric forms for the transition rates. Maximum likelihood method was
used to estimate the transition rates and different treatment groups are
compared using likelihood ratio tests. Joly and Commenges (1999)
considered the estimation of the intensity and survival functions for a
continuous time progressive three-state semi-Markov model with

intermittently observed data. Hsieh er al. (2002) discussed a three-state

(PRINT) :ISSN 1110-4716 146 (ONLINE): ISSN 2682-4825



YYY e gl ) Jusaill g 5_lal) Lalal) Alaal)

progressive non-homogenous Markov model with two non-homogeneous
models using the Weibull distribution and piecewise exponential model with
covariate functions of the proportional hazard to accommodate non-constant
transition rates. Van den Hout and Matthews (2008) provided a general
method for estimating multi-state models for interval-censored data. They
focused on time-dependent parametric models such as, Gompertz and
Weibull distributions. A piecewise-constant approximation to the parametric
hazards was considered, using a scoring algorithm for estimating the

models. Machado and van den Hout (2021) presented a new and efficient
method to estimate multi-state models with splines using automatic
estimation of penalty parameters. They showed that using splines with
penalty parameters can improve model fit. Jackson et al. (2022) compared
two multi-state modelling frameworks that can be used to represent dates of
events following hospital admission for people infected during an epidemic.
One modelling framework was based on defining transition-specific hazard,
the second was using a mixture model to estimate the probability that an
individual will experience each event, and the distribution of the time to the

event given that it occurs.

Most studies focused on modeling the true disease progression as a
discrete time stationary Markov chain, and only a few studies have been
carried out regarding non-homogenous multi-state models in the presence of
interval-censored data. Most of the literature are limited to the three-state

models.

In this paper staged disease progression model with four transient

states and one absorbing state is proposed. The suggested model is studied
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in the case of continuous time non -homogeneous multistate model based on
non-homogeneous Markov processes. A parametric time-dependent
multistate models are considered to fit a non-homogeneous Markov process
where transitions are specified by the hazard of exponential and Weibull
distribution. The parameters of the suggested models are estimated by ML
method. The likelihood function is constructed using transition probabilities,
therefore they are derived first.

This paper is organized as follows: Section (2) introduces multi-state
models and discusses the framework of Markov processes. Section (3)
discusses parametric multi-state models. Section (4) discusses some
extractor quantities. Section (5) is devoted to the suggested models and the
estimation of their parameters. In section (6) an application using BOS data
set is applied to represent the performance of the suggested models. Section

(7) contains conclusions.

2. Multi-state models

MSMs are the most commonly used models for describing the
development for longitudinal data. MSMs are models for a stochastic
process, which at any time point each individual occupies one of a set of
discrete states. In medicine, the states can describe conditions like healthy,
diseased, diseased with complications, and death. A change of state is called
a transition. This corresponds to outbreak of disease, occurrence of

complications and death.

MSMs can be illustrated using diagrams with boxes representing the
states and with arrows between the states representing the possible

transitions. A state is called an absorbing state if transitions cannot occur
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from that state. A transient state meaning that at least one transition is
possible from that state. The complexity of a MSM depends on the number

of states and also on the possible transitions.

MSMs for interval-censored data are commonly formulated in a
Markov processes framework [Kalbfleisch and Lawless (1985)]. The
Markov property states that the future of the process only depends on the
current state. There are two types of Markov process in the literature, the
discrete-time Markov process, and the continuous-time Markov process.

This paper is concerned with continuous-time multi-state processes.

Continuous-time Markov process expresses the condition that the
state space, , is discrete and the time T is continuous. Given the time points
ty, ty, ..., ty, it is of interest to examine the joint distribution of Y;,Y,, ..., Y,,
where ¥; = Y(t]-) forj = 1,2,...,n. Commonly, (Y (¢t)|t € T) is assumed
to be a Markov process, which means that the future state of the process
only depends on the current state. Thus, a continuous-time Markov process
on the discrete states D is defined through a set of probabilities, p,¢(t),

such that,
Prstw)=pY(u+t)=s|Y(u)=r) for u=01t=0. (2.1)

which represents probability of being in state s at a specified time u + ¢t in
the future.

[Van den Hout (2017)].

In applications, models are specified through the transition intensities
over a small time interval. The transition intensities from state r to state s are

given by
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Ars(t) = qps = g}m Pt +48 = sI¥(®) = 1) TFS (2.2)

-0 At
where q,.¢(t) is the instantaneous risk of moving from state r to state s

[Andersen and Keiding (2002)].

Transition intensity matrix, Q(t), is given by:

Gi1 = — Xs=1 s q12 Q13 - Qin
Q) = q21 Q22 = — Xsz2G2s G2z =~ qon|, (2.3)
S q32 . e q37’l

where Q(t), is a matrix with off-diagonal entries q,; and diagonal entries

Qrr = — Xs2rQrs- 1 @ = 0 the state r is called absorbing.

the generator matrix satisfies:

e ¢s=0 forr=s

i Zs%‘s =0

The Markov process (Y (t)|t € T) is time homogeneous if the
probability (2.1) only depends on the initial state as follows:

prs(t) =p(Y(£) =s|Y(0) =71) , (2.4)

The probabilities in (2.4) satisfy:

e 0<p.(t)<1, (2.5)
® DPrk ) = Zs prs(u) Prk (t— ), t>u (2.6)
o Yiprs(t) =1, (2.7)
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Eq. (2.6) is the Chapman-Kolmogorov equation for a time homogeneous
Markov process. Then, the matrix P(t) which contains these probabilities is

called the transition probability matrix, P(t), and is defined as
P(t) =PwP(t—u) withp(0) =1, (2.8)

For a given generator matrix, Q, a Markov process is defined. The link
between a generator matrix and its probability matrix is established by the
forward and backward equations as follows:

P(t)=P()Q, (29)
P(t) = Q P(v), (2.10)

Given the initial condition P(0) = I, the unique solution of both forward
and backward equations in (2.9) and (2.10) is
2,k Qk

k!’

P(t) = exp(Qt) =
k=0

(2.11)

where exp is the matrix exponential.

[cox and Miller (2017)].

For many applications, the risks of moving across states depend on the
current state and on time. In this case, a non-homogeneous Markov
assumption is assumed to model the multi-state process. The generator
matrix is then a function of time, which means that the matrix Q(t) can vary
over time. In these models transition intensities,q,, are assumed to depend
on time and the individual characteristics through a covariate vector. Time-
dependent models can be defined by using proportional hazards model for

transition from r to s, r # s, as follows:

CIrs(t) = qrs.O(t) eXp(BrsX)l (2.12)
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where

® (rso(t) represent the hazard function for an individual for whom the
values of all the explanatory variables that make up the vector x is zero.

e X= (xl, Xp, e ,xp)T is the vector of values of the explanatory
variables which may be recorded at the time origin of the study or
changing over time.

o B = (Brois > [S’rs,p)T is the vector of coefficients of the
p explanatory variables acting on transition from state r to state s.

3. Parametric Time-Dependent Multi-State Models

Several time-dependent models can be fitted with parametric
specifications for transition hazards. In time-dependent hazard regression
multi-state models in E. (2.12) transition-specific time dependency
introduced with parametric baseline hazards. Examples of parametric

baseline hazards are

e exponential: g.0(t) = 4, As > 0
e Weibull: Qrs0(t) = Apstpg tOrs™1 ApsTps >0
o Gompertz: : q50(t) = A, e~ Crst), Ag >0

Ars Prs(Arst) Prs—1
1+(Arst) Prs

e log-logistic: q,50(t) = Ars Prs >0

The exponential model is the simplest parametric hazard specification,
which does not allow for time-dependent modelling. The Weibull, Gompertz
and log-logistic specifications are useful to model monotonic upward or

downward over time.

Fully parametric multi-state models are appealing in a number of situations

such scientific background may suggest specific forms for certain
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intensities. Data sparsity in certain time regions lead to imprecise
nonparametric estimates, in such settings a more precise parametric estimate
that agrees with observed data may be preferable. When data are
incomplete, nonparametric estimation may be difficult or the corresponding
estimator may be undefined.

[Cook and Lawless (2018)].

In this study fully-parametric models are considered where transitions can
be specified by a variety of parametric models with no explanatory variables

effects, thus transitions intensities are depending on time only.

Let ¢ denotes time in a progressive continuous-time multi-state survival
model. At t >0, the true state of an individual is Y, € {1,2,...,D}.
Transitions intensities of multi-state model, q,¢(t), are specified by the

hazard function of a certain distribution.

Given time interval [tq, t,], the transition probability from state r to state s

is obtained by

Drs(t1,t2) = P(Ytz ) = S|Yt1(t) = r) =
fttlz exp [ —Hr(t;, w)] q,s(w) exp[ —Hs(u, t;)] du, (3.1)

And the transition probability for staying in state ris given by:

Prr(ty, ty) = p(Yt2 ) = r|Yt1(t) =71) =Hr(t,t;) for r=123,.. (3.2)
where
ts
Hr(ty,t,) = f h(0) du (33)
t

[Van den Hout and Matthews (2008)].
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3.1 Inference of Parametric Multi-State Models:

Maximum likelihood method can be used to estimate the model
parameters in case of parametric time-dependent multi-state models.
Estimation of model parameters is undertaken by maximising the log-
likelihood. Because of the interval censoring, the likelihood is constructed

using transition probabilities.

3.1.1 Likelihood function of multi-state models:

Let the state space be S = {1,2,..,D}, with D is the dead state.
Consider a series of states Y;,Y;,..,Y, observed at times ty,t,, ..., ¢,
respectively. Using the Markov assumption, the contribution of the
individual to the likelihood conditional on the first state is given by:

L;(8y) =P(Y] =Y V2 = YZ|Y1 = }’1'9)

J-2
= HP(YJ' = Yjl¥i1 = %-1.0) C(3/¥-1) (3.4)
j=2

T .
where 8 = (91’ e 9q) = (12, 915, 923, 925 934, G35, Gas)” is the vector
with the model parameters,

If a living state at ¢; is observed, then

C(3/y1-1) =P(% = y[%-1 = y1-1), (3.5)

If the state is right censored at tj, then

C(y/yy-1) = X2 P(Yy = s|Y_1 = yj_1), (3.6)
If death is observed at tj, then
D-1

COn/ya) = ) P(G = sl%s = 1) a8, 3.7

s=1
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Thus, the likelihood contribution for an individual is

Li(®ly) =TT, Ly, (3.8)
where

) ={P(Y,- = yi|%-1 = ¥-1,0,t-1) forj=2.,]-1 39)

T le(wy/y-a) forj =] ‘ .

Given N individuals, the likelihood function is given by
L=3Y, Li®ly) =%¥, T, Ly, (3.10)

The natural logarithm of the likelihood function is:

N ]

200) = Z Z log Ly, (3.11)

i=1j=1

The maximum likelihood equations are:

N J
60 9
Uk(9)=L=ZZ—log L =0, k=12 ...q (3.12)
06 L4406,
l= J=

The maximum likelihood estimates of U, (@) are derived using numerical
methods.
[Machado (2018)].
3.1.2 Confidence Intervals for the Parameters
The ML estimators of the parameters are asymptotically normal,
asymptotically unbiased and have asymptotic variance—covariance matrix
given by the inverse of the Fisher information matrix. The elements of the
fisher information matrix are obtained by taking the negative expectation of
the second derivatives of the natural logarithm of the likelihood

function, L(@), with respect to @ as follows:
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(3.13)

16) = —E <62€(0)> ,

90,00,

Then the second derivatives of the natural logarithm of the likelihood

function is given by:

2 N ]
67£(6) =22 O g L, (3.14)
960,00, 90,00, & U '

i=1 j=1

Unfortunately, the exact mathematical expressions for the above expectations are
very difficult to obtain.

Therefore, the asymptotic Fisher information matrix is

N J
) 92£(8) 9
l;(6) = = <aeka¢9v> - _ZZ 30,90, %8 Lii (315)

i=1 j=1

which is obtained by dropping the expectation operator E .

The approximate asymptotic variance —covariance matrix for the ML
estimators is the inverse

of asymptotic Fisher information matrix. It is useful for computing the
standard error of

ML estimation.

.1 .
1(8) _II(O)Iad] 1(6) (3.16)

where adj 1(0) is the ad joint of 1(8).

For large sample size, the ML estimators under regularity conditions are
consistent and asymptotically unbiased as well as asymptotically normally
distributed; hence the asymptotic two sided confidence intervals of the
parameters for the ML estimators are obtained by:

Q:ingr —0;
—y < ML 7L
T0im1

p =1-agq, (3.17)
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where z is the 100(1 — %) th standard normal percentile. The two sided

approximate 100(1 — %)100% confidence intervals are given by:

Lo = Oy — Zz 6, and Ug =0y +Zz 65, ,i=12,..,b (3.18)
2 Ot 2 Ot

where 65 is the standard deviation of the parameters 9, and 0;y,, is
iML

[Tanner (1996)].

4. Some extractor quantities
A set of quantities can be used to extract interesting features of the
fitted multi-state model including expected duration in each state and the

population size of states.

4.1 Expected duration time in each state:
It represents the average duration that an individual is expected to stay

in each state with a time period of length ¢t depending on the initial state.
The expected duration of stay in state s between times ¢, and t for an
individual in state r at time t,, is defined by the integral from ¢, to t of the

r,s entry of the transition probability matrix, P(t).

For person in state r at current time tg, let

e s(t) 1is the expected duration of stay in state s in the interval (ty,t), s =
1,2,..,D.

Let an individual be in state r at time t, and, for each u, t, <u <t, the

indicator function I,¢(u) is defined as:

1 if the individual is in state r at time t

Lrs(u) = {0 otherwise , (4.1)
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With the expectation

ElLs(w)] = prs(w) (4.2)
Then,
er® = E [ o) du 43)

Interchanging the expectation and the integral sign gives

t
e(t) = J- prsw) du, ty<u<t, r,s=12,..,D (4.4)
to

The sum of the expected durations of stay over all states is equal to the

entire length of the interval,
e1(t) +e(t) + - +es(t) =t r=12,..,D (4.5)
[ Chiang (1968)].

4.2 The population size of states:

It provides a description of population size in all states over a period
of time. An individual in state S, at time 0 must be either in the same state

or move to another state at time t.

At time t = 0, let there be x4(0) individuals in state S; and x,(0)
individuals in state S, , and so on x,.(0) individuals in states S, , where r =
1,2,...,D. Thus the sum x(0) = x;(0) + x,(0) + -+ xp (0) be the

initial size of the population.
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Suppose that the x(0) individuals travel independently from one state to
another, and at the end of the interval (0,t) individuals are in states
S1,S2, .., Sp , Then

x(0) = X;(t) + X,(&)+ -+ Xp () (4.6)

Each r of the random variables on the right side of (4.6) has a multinomial

distribution with probability generating function given by:

E[ 7020 2570 | 5,00 | = [ra(6) 21 + Pra(8) 2+ + pyp(8) 2] (4.7)

Therefore, the probability generating function of the joint probability
distribution for the population sizes of all the states at time ¢t is

E [zlx”(t)zfrz(t) ...Zg"(t) | x1(0), x,(0), ...,xr(O)]

=[ [P @2+ pro@ 2 + -+ prp(© 25 (48)

r

and the joint probabilities are

p(X1(t) =x1, X, (t) = x5, ., Xs(£) = %, | %,(0), x,(0), -":xr(o))

x,-(0)!
an1 PO DO PO s =120 (49)
.

! xrz

The expected number of individuals in state Sg at time ¢ is given by:

E[XB (t) I xl(O)J X2 (O)' ey xr(o) ]
= x1(0) p1g(8) + x2(0) p2p(8) + -+ + x,(0) prp(t) (4.10)
[ Chiang (1968)].
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5. The Suggested Model

The model contains four transient states and one absorbing state. The
four transient states are healthy state S;, mild disease state S,, moderate
disease state S; and the severe disease state S,. An absorbing state is the
death state Ss .

5.1 Model Assumption

Transitions are permitted from:

e healthy state to mild state (S; —= ;).

e healthy state to death state (S; — Sg) .

e mild state to moderate state (S, — S3).

e mild state to death state (S, — Sg).

e moderate state to severe state (S3 —= S,) .

e moderate state to death state (S; — Ss).

e severe state to death state (S, —  Ss).

e The considered disease is so dangerous that recovery from it is not
allowed i.e. no transition from mild, moderate state and severe
disease state to healthy state.

The possible transitions are shown in the following figure:

Q12 q23 34 5
4

q2s q3s

G1s A A Q45

Figure 5.1: The proposed 5-state model.
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It is assumed that the transitions between states described by an irreversible
continuous-time five-state model. The transition intensities are allowed to
depend on time where transitions are specified by parametric models
including exponential, Weibull. Let 7 denotes time from state r entry to state
s. At t = 0, the true state of an individual is Y ; € {1,2,3,4,5}. The death
state is state 5. Given time interval [tq, t,], the cumulative hazard functions

for leaving state 1,2,3 and 4 are given by

[

Hity, t) = j (41,0 + ()] du, G.1)
t%2

Ha(ty, ty) = f (4,5 ) + ()] dus, 52)
t1
ty

Hi(ty, ty) = f (45, @) + 435 a)]dus, 3)
t1

Ha(ty, t;) = f 4,5() du, (5.4)

respectively, where q,5(t) is called the intensity of a transition from state r
to state s, forr # s.

Transition probabilities pys(t1,t2) = p(Yy,(t) = s|Y, (t) = 1) are given
by

p11(t1, ty) = exp[ —H1(ty,t;)], (5.5)
ty

PraCtunts) = [ exp[—H1(ts0)] g expl ~H2(u, )] . .6)
%1

tz tz

Pastyty) = f f exp [ —H1(t;, )] q12(u) expl ~H2(1, v)] qa5(v) exp[ ~H3(w,t,)]dvdu,  (5.7)

tHou
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pultyty)
itz by

= [ [ [ -ttt aste) gl -2 ) -3 g ) gl - )] o . 59

rJIJI.'

P1s(ty, t2) = 1 —py1 (8, t) — p12(ty, t2) — P13 (e, t2) — P1a(ty, t2), (5.9)

P22(t1,t;) = exp[ —Hz(ty, t5)], (5.10)
ty

p23(ty, t) = J exp [ —H2(ty,u)] q12(w) exp[ —H3(u, t;)] du, (5.11)
%1

tz tz

Paaltyty) = f f expl —H2(t,,1)] qa3(u) expl —H3(u, v)] qa4(v) expl —HAw,t,)] dv du, (5.12)

tHou

D25(t1,t2) = 1 = pop(ty, t3) — P23 (ty, t2) — P2a(ty, t2), (5.13)
p33(ty,tz) = exp[ —H3(ty,t,)], (5.14)
ty
poaltnt) = [ exp [—H3(6, W] s expl ~HACu )] du,  (5.15)
%1
D3s(ty, t2) = 1 — p33(ty, tz) — p3a(ty, ta), (5.16)
Paa(ty, tz) = exp[ —HA4(ty, )], (5.17)
Das(t1,t2) = 1 — paq(ty, tp), (5.18)
pss(ty,tz) =1, (5.19)
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5.2 The exponential model

The exponential model is the simplest parametric hazard specification,
which does not allow for time-dependent modelling. In the exponential
model, transition-specific hazards are specified by constants. For the current

five-state model. Let

qu(t) = qu 4 fOT' (T, S) S {(112)1 (1!5)1 (213)1 (215)1 (314)1 (3!5)1 (415)}' (520)

Then, the transition probabilities are as follows:
p11(ty, t2) = exp[—(t; — t1)(q12 + q15)], (5.21)

pi2(ty, ) = iz ; [exp(—(qa23 + q25) (t2 — t1) — exp[—(q12 + q15) (t2 — t)]], (5.22)

izt Q15 — Q23 — 92

P13 (te, t2)

Q12 923 [(q22 — q33)eT1(27) — (gy1 — g33)e22ta=t) + (qqq — qpp)e T332t
(911 — 933)(q22 — 933)(q11 — G22)

,(5.23)

q12 923 934 z ed11(t2-t1)

(q33—q44) [(q22—033)(q11—q22) (422~ 944)(411=933)(q11—q44)

P14(ty, ty) =

(g33—qaq) e922(t2-t1) eq33(t2—t1) ed44(t2—t1)

(922-933)(q11—922)(G22—q44) (922-933)(q11—q33) (22—q44)(q11—q44) ]’

(5.24)
where
Zz = (Gz2 — 944)(q11 — 933) (@11 — 9a4) — (@22 — 933) (911 — 933)(q11 — Gaa)

= (922 = 924) (@11 — 922)(q11 — qas)
+ (922 — 933) (911 — 933)(q11 — q22)
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q12
G12 T q15 — 923 — Q25

— exp[—(q12 + q15)(t2 — t1)]]

[exp (—(qz3 + q25)(t2 — t1)

p1s(ty, tz) = 1 —exp[—(t; — t1)(q12 + q15)] —

q12 923 Q34 7 ef11(t2—t1)

B (q33 = qaa) [(qZZ = q33)(q11 — 922) (422 — q44)(q11 — q33) (G117 — Ga4)

(933 — aa) edz2(t2—t1) ed33(tz—t1)

- +
(q22 = @33) (@11 — 922) (@22 — Gua) (922 — q33)(q11 — G33)

e‘l44(tz—t1)
- , 5.25
(@22 = qa4)(q11 — CI44)] ( )
P22(t1, t2) = exp[—(t; — t1)(q23 + q25)], (5.26)
P23ty ty) = 923 [exp(—(qss + q35) (2 — t1)
q23 T q25 — 434 — 35
—exp[—(qz23 + q25) (2 — t1)]], (5.27)
esz(tz—t1) 6433(f2—t1)
(ti,ty) = -
Paatfitz 12334 (@22 — 944)(q22 — @33) (@33 — 944)(q22 — q33)
ed4a(tz—t1)
(5.28)

(433 — 444) (@22 — qaa) |’

P2s(ty, t2) =1 —exp[—(t; — t1)(q23 + q25)]

q23
- exp (—(qz4 + q35)(t;, — t1)
423 + 425 — 934 — (35 [exp (= (@54 + Gs)(t: — 1

— exp[—(qz3 + q25)(t; — t1)]

ed22(t2—t1) e433(tz2—t1)

— (423934 [ (922 — 944) (@22 — q33) B (933 — 944)(q22 — q33)

eaa(tz—t1)

B (q33 — 944)(G22 — Q44)]’ (5-29)
p33(t1, tz) = exp[—(t; — t1)(q34 + q35)], (5.30)
_ 434 _ _
P3a(ty, tz) = PR——— [exp(—q4s(t; — t1)
— exp[—(qz4 + q35)(t2 — t]], (5.31)
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p3s(t1,t2) =1 —exp [—(t; — t1)(q34 + q35)]

q34
T ea+ Gas — s [exp(—qqs(ty — t1)
— exp[—(qz4 + q35)(t2 — t]], (5.32)
Paa(ty, t2) = exp[—qas(t; — t1)], (5.33)
Pas(ty, t2) = 1 — exp[—qus(t; — t1)], (5.34)

For an individual, the likelihood function is given by (3.1)

If the state is right censored at tj, then

C(31/y1-1) = Xs=1 P(Y = s|¥j—1 = ¥p-1), (5:35)
If death is observed at ¢}, then

4

COn/ya-D) = Y P(Y = slhy = vp-1) ass(t), (5:36)
s=1

Substituting with probabilities in (3.1) , differentiating with respect to 8 and

equating to zero yields the score equations. These equations don’t have closed

form solution. They can be solved numerically to obtain the estimator of the

elements of the transition intensities matrix

411, 412, Q15: 422, G235 25, 433, 34, G35, Gas aNd Gy .

Using equation (4.4) and q11 = —(q12 + G15), q22 = —(q23 + q25), 33 =
—(q34 + 935), Qaa = —Qa4s , the expected duration of stay in S; , S,, S3, S,

and Ss in the interval (0, t) can be derived respectively as follows:

- For an individual in state S; at time O :

eduit — 1

e11(t) = e (5.37)
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(eQnt -1) (elhzt -1)
12[ - ]

q
e1,(t) = . T2 (5.38)
q11 — 422
e;3(t)
qut _ 1 qz2t _ 1 qsst _ 1
412 423 [(‘hz - Q33)(eq—) —(q11 — 933) u + (11 — q22) u]
_ 11 922 433 (539
(911 — 933)(q22 — q33) (911 — G22)
e14(t) = 912 933 934 z (ef11t-1) —
14 (433=944) "911(9227933) (011~ 922) (022~ 944) (911~ 933) (911~ T44)
(933=444) (e722°-1) (e”33'-1) _
422(922=033) (411 922) (422~ Taa) ~ 933(922—933) (011~ 433)
(e™4'-1)
, 5.40
44 (922~ 944) (911~ 944) ( )
ot q (e‘hlt — 1) _ (eqzzf - 1)
11t 12
() =t — (e D_ q11 922
q11 q11 — 422
qu1t _ q22t _ qazt _
q12 923 [(CIzz - CI33)% = (g1 — CI33)% +(q11 — ‘hz)%
B (911 — 933)(q22 — 433) (@11 — G22)
_ 912 923934 z (et1t —1)
(33 = 944) |911(q22 — 933)(Q11 — 922) (22 — 944D (@11 — @33) (11 — Gaa)
_ (q33 — qaa) (e92" —1) N (e®3' —1)
422(22 — 433)(q11 — 022) (@22 — Qua)  G33(d22 — 933)(G11 — 933)
_ (6444t _ 1) ] (5 41)
q4a (@22 — Q2a) (@11 — Qua)|’ ’
- For an individual in state S, at time O :
ed22t _ 1
ey (t) = — (5.42)
422
423 (2t —1) (e%s'—1)
ex3(t) = - ) (5.43)

(q22 — q33) d22 433
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ed22t _ 1 edsst _ 1

q22(q22 — 944)(q22 — q33) B q33(q33 — 944)(d22 — q33)

e24(t) = q23q34 [

edaalt _ 1 ]
- ) (5'44)
q44(q33 — q44) Q22 — qaa)
L eldz2t — 1 B (eqzzf — 1) (91133f — 1)
s =t q22 (qz22 — q33)[ ]
B [ e‘Zzzt -1 B edsst — 1
12331 022022 — 444) (@22 — G33)  G33(q33 — q44) (@22 — q33)
edaat _ 1
B q44(q33 — 444)(q22 — q44)]’ (545)
- For an individual in state S5 at time O:
ed33t — 1
e33(t) = ——, (5.46)
433
[eQ33t -1 edaat 1]
ez (t) = - ) (5.47)
3 (Q33 Q44) qa4
ed3st — 1 [e%st -1 edaat 1]
ess(t) =t — - , (5.48)
35 433 (Q33 Q44) qa4
For an individual in state S, at time O :
edsal _ 1
ey (t) = ——, (5.49)
qas
1 — eYaat
es() =t +—f), (5.50)
a4
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5.3 The Weibull model

In the Weibull model, transition-specific hazards are time-dependent. For

the current five-state model. Let

qrs(t) = ady st for (r,s) € {(1,2),(L5), (2,3),(2,5),
(3,4),(3,5),(4,5)}, (5.51)

where for each pair (r,s), the scale parameter is a > 0 and the shape
parameter is A, > 0.

Then, the transition probabilities are as follows:

_ _(+a _ 1
P11(ty, t2) = exp[—(t5 — t{)(A12 + A15)], (5.52)
— A2 yl 2 a a
P12(ty, t2) = Tt —1.-1 [exp(—=(A12 + A15)(t2 — t7)
23 25 12 15
a a
—exp[—(A23 + A25) (7 — tDI], (5.53)
oty = Pz Azl Ol 255 = Ao = Apg)e a5 tE) — gy + A = My = Dag)e™ st ED) 4 (hgg + Mg = g = Hyg)e” e (D)) 554
Prolluta) = T A T Ry ey Fepey N Wy Wty Ny 1) n 6
Pralts t) = Aizdazdzs [ 2" exp[=(t§—t{)(A12+415)] _
1t "2 (Ras—A3s—23s) | (Aza+A3s—A23—Az5) (A3 +Azs—A12—A15)(Aas—Az3—A2s) (Aaa+Ags—A1z—A1s) (Aas—A12—A1s)
(A45—2A34—235) exp[—(t5—t]) (12 +115)] exp[—(t7 1) (A34+435)] e~has( 1) (5.55)

(A34+235—A23-225) 23+ Aas—A12—A15)(Aas—A23—Azs)  (Aa+has—A23—Aas)(A3a+A3s—A1z=A1s)  (Aas—Az23—A25)(Aas—212—A15) ]

where

Z" = (45 — A3 — A25) (434 + A35 — A1z — A15)(Ays — A1z — A45)
= (A34 + A35 — A3 — A25)(A34 + A35 — Ag2 — A15)(A4s — 412 — A45)
= (45 — Ag3 = A25) (A3 + A5 — A1z — A15)(Ags — 412 — A45)
+ (A34 + A35 — A3 — A25) (434 + A35 — A1z — A15)(A23 + 425 — A1z — A45), (5.56)
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Pis(ty, t2)
A
=1—exp[—(t5 — tF) Az + Ai5)] — — [exp(=(A1p + A15) (5 — tf) — exp[—(Az3 + A5) (t5 — t)]]
/123 + /125 - /112 - 115
Qo3[ (Aa + Ags = Ag — Aps)ePrzt M E=t0) — (20 4 g — 4y — 2y5)e Pt -t0) 4 (2,0 4 Qg — gy — Ay5)e Pl (E-6)]
(Aa3 + Ao — A1z = i) (Aag + A3 — Aoz — Ap5) (A3g + A3s — A1p — Ais)

_ Az Aoz Azy [ 2" exp[=(t§ = t{) (A2 + Ais)]
(145 — Az — 135) laa«} + g5 — Ag3 — 125)(123 + s = iz — 115)(}&45 — a3 — 125)(134 + 35 = iz — 115)(}&45 =iz = Ais)
(Aas — Aaa — Ags) exp[—(t5f — t) (Lsz + Asi5)] exp[—(t5 — tf) (Aas + A35)]

- +
(A3s + Ass = A3 = Aos) (Ao + Aos = hiz = Ais) (has — Aos = Aas)  (Asa + Ass — Aoy — A25) (Aza + Ags — Aip — Ais)

e—Has(t5-t9)

"G = =) O — o — )| 57
P22(t1,tz) = exp[—(tF — t§) (A3 + 255)], (5.58)
D23(ty, tp) = Y23 [exp(—(Az3 + A25)(t5 — t1)
Azq + A35 — Az3 — Aps
—exp[—(A34 + A35) (5 — tD]1, (5.59)
(ty ty) = A23 434 [ (Ags — A4 — Azs)exp[—(t% — t9)(Azs + Az5)]
P2att B = s — Asa — A3s) (Rsa + Aus — Ags — Agg) (Ags — Agg — Agg) 45 734 7 Aas)XPIT T HMas T A2
— (Aas — Az3 — Az5)exp[— (&5 — t§)(A34 + A35)]
— (A34 + A35 — Ap3 — Ag5)exp[—A45(t5 — t])]], (5.60)
P25 (e, t2)
=1 —exp[—(t7 — t{) (A3 + A35)]

_ Ay3
Azq + 35 — Az3 — Ags

[exp(—(Az3 + A25) (5 — tT) — exp[—(As4 + A35) (t5 — t)]]
_ Mgz A34

(Aas — A34 — A35) (A3 + Ags — Aoz — Ap5) (a5 — Aoz — Azs)
— tD) (g3 + 15)] — (Mas — Aaz — Azs5)exp[—(t5 — t1) (Az4 + 235)]

[ (A4s — A34 — A35)eXp[—(t5

— (A34 + A35 — Ap3 — Azs)eXp[_/L;s(tg - t(f)]]: (5.61)
P33ty t2) = exp[—(t3 — tf)(Azs + 2435)], (5.62)
A
P3a(ts,ty) = + [exp(=(tF — t{) (34 + A35) — exp[—Aqs5(t5 — tP]], (5.63)
Ays — Azq — A3s
A
P3s(tt) =1— F— ;4 7 [exp(— (&5 — t1)(A34 + A35) — exp[—2,5(t3 — D], (5.64)
45 34 35
Paa(t1, tz) = exp[—A,5(t5 — t)], (5.65)
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Pas(ty, ty) = 1 —exp[—2A,5(t5 — t9)], (5.66)

For an individual, the likelihood function is given by (3.1) and substituting
with probabilities in (3.1) , differentiating with respect to @ and equating to
zero yields the score equations. These equations don’t have closed form
solution. =~ They can be  solved numerically to  obtain

@, A2, A1s, Aas, Ags, Azg, Azs and Ays .

Using Equation (4.4) the expected duration of stay in S; , S,, S5, S, and Ss in the

interval (0, t) can be derived respectively as follows:

- For an individual in state S; at time O :

1— e—(/112+115)t

e11(t) = (5.67)
(A2 +2445)
Ao 1 — e~ QA12+15)t 1 _ o=(A23+425)t
e (t) = [ - ] (5.68)
Az + Ays —Aip — A5 (A + Ays) (A3 +A35)
iy [(134 gy =2y = 2 BEELEEID a2y~ 209 BEEEII 4 a4 25— 2, - 209 BEESS
en® = 5.69)

(Ag3 + Aps — Aiz — Ais) (Agg + Ags — Aoy — Aos) (Ag + Ags — A1z — Ass)

2 a+e~(R12+215)t)
(112+245)

e4(t) = 212 423 434 [ _
14 (A34+235—223—225) (A23+A25—A12—A15) (A5 —A23—A25) (A34 +A35— 412~ A15) (A45—A12—215)

(A45—234—435)

(1+e~(A23+225)ty (1+e~(A34+235)t)
Aas—Agg—Ags) L2 Qe T35
(A45=A34—435) (A23+425) (A34+435)

+ —
(A34+235—223—A25) (A3 +A25—A12—A15) (Aas—2A23—A25)  (A3a+A35—A23—225)(A34+A35—A12—215)

(1+e a5t
(145) ]
(Aas—223—225) (Aas—A12—A15) "

(5.70)
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eis(®)
1 — e~(Gaztis)t Az 1- e~Mztlis)t 1 27(313»125):1
T OnA Ay daths—An—hs Goths)  Gaths)
( (1 + e’(/lzgi»/lzg)t)
Q12 Aaz | (A3 + 235 — Ap3 — Azs)m = (A34+ A35 = A2 — A15)W
(s + 225 = Az = Aas) s + Aas — A2z — 225) Chas + Aas — Az — Ars)

—(Agp+Ass)t
Z((1+e 1244 ))

14 oGzt (1 4+ ¢ —Uastiar)
+ Qa0 = i~ his) 5

Modashs | ST EE)
T Chas— A1~ 259) Gy + A5~ s~ 225)Chis & Azs — Az~ Aus)has — A3 — A35)Uhss + s — Tz — 2u)has — Az — )
e-Uasthz)t e~ (asthss)t
_ (s =219 O . e
s + s — s~ 2390 0hzs + s — Az — Aus)Chas — A5 — Azs) | (s F Azg — A3 — Aas) s + A5 — Az — Ta5)
(14 ety
Tap) )
PR Py W T Wy W L @71
- For an individual in state S, at time O :
1+ exp[— (23 + A5)t]
ey (t) = , (5.72)
(A23 + A35)
eys(t) = Az3 [(1 + exp[— (23 + 2,5)t])
23 =
Azq + Az5 — Ay3 — A5 (A23 + A35)
(1 + exp[—(A34 + 235)t])
- , (5.73)
(134 + 135)
123 134
e, (t) = Ags — A
2 (145 - 134 - )'35)(134 + 135 - 123 - 125)(145 - 123 - )'ZS) ( 5 34
(1 + exp[— (4,3 + 225)t]) (1 + exp[— (434 + A35)t])
-1 — (A4 — 433 — A.
35) (423 + 235) (o5 = A2z = A2s) (434 + 435)
1+ exp[—A4st
(A34 + 435 — 253 — AZS)WM
- 45 , (5.74)

q44(q33 — 944) (@22 — Qa4)
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1 + exp[—(A3 + 425)t]

e(t)=t—

(423 + 425)
_ Aa3 (1 + exp[—(A,3 + A,5)t]) _ (1 + exp[—(A34 + A35)t])
134 + 135 - AZ3 - 2'25 (AZ3 + 2‘25) (134 + 135)
_ Aa3 Aza (as — 2
(145 - 134 - 135)(134 + 2‘35 - 123 - 125)(145 - AZ3 - 2'25) s 3t
(1 + exp[—(A,3 + 2,5)t]) (1 + exp[—(A34 + A35)t])
B 7 W B ¢ WS
(A34 + A35 — A3 — Azs)meiaw
- 45 (5.75)
q44(q33 = 94a)(G22 — aa)
- For an individual in state S; at time O :
1+ exp|—(A34 + A32)t
es5(t) = ( p[-( 34 35) D (5.76)
(A4 + As5)
eau(t) = A3q (1 + exp[~(23, + 235)t]) _ 1+ exp[—/145t]] (5.77)
3 Ags — A3q — A35 (A34 + 235) Ass T
A 1 + exp|—(A34 + A3:)t 1+ exp|—2,:t
ess(t) = t — 34 ( p[— (434 + 235)t]) _ pl—24s ]]’ (5.78)
Az — A34 — A35 (R34 + A35) A4s
-For an individual in state S, at time O :
1+ exp[—A,t]
ey (t)y = ———, (5.79)
A4s
1+ exp[—2,5t]
ept) =t— ————, (5.80)

145
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6. Application

The suggested model is illustrated using an application of BOS data set. The
dataset containing histories of bronchiolitis obliterans syndrome (BOS) from lung
transplant recipients. BOS is a chronic decline in lung function, often observed
after lung transplantation. The data come from Papworth Hospital UK and are
available in the msm package. Applying parametric multistate model requires
completely observed processes. By Converting BOS data set for a multi-state
model fit, where observations represent the exact transition times of the process. To
obtain complete observed processes the following steps are obtained:

o specifying T start which representing time at the start of the interval, T
stop representing time at the end of the interval.

e The experimental time is calculated as the difference between T start and
T stop.

e The status of each individual takes 1 if the transition to state to was
observed, or 0 if the transition to state to was censored.

This enables flexible parametric multi-state models to be fitted with the
flexsurv package. The obtained data is called NEW BOS data.

6.1 Data description

NEW BOS data representing data for a five-state model. It contains a
sequence of observed transitions to the next stage 2, 3, 4, representing mild,
moderate and severe BOS respectively, and stage 5, representing death. It contains
818 rows, representing transitions of patient, including histories of 204 patients. All
patients start in state 1 (no BOS) at six months after transplant, and may
subsequently develop BOS or die. It includes patient identification number
(Ptnum), the observed starting state of the transition (From), the observed or
potential ending state of the transition (To), T start representing time at the start of
the interval, T stop representing time at the end of the interval, Time representing
The experimental time and Status takes 1 if the transition to state to was observed,
or 0 if the transition to state to was censored.
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6.2 Results
Sample data layout for the NEW BOS data are illustrated in Table (6.1).
Table 6.1: Sample data layout for the NEW BOS data.

No. row Ptnum From To T start T stop Time Status
(months)
1 200001 1 2 6.0000 58.2666 52.2666 1
2 200001 1 5 6.0000 58.2666 52.2666 0
3 200001 2 3 58.2666 78.9000 20.6334 1
4 200001 2 5 58.2666 78.9000 20.6334 0
5 200001 3 4 78.9000 118.0667 39.7670 1
6 200001 3 5 78.9000 118.0667 39.7670 0
7 200001 4 5 118.0667 126.2000 8.1333 1
8 200002 1 2 6.000000 39.6333 33.6333 1
9 200002 1 5 6.000000 39.6333 33.6333 0
10 200002 2 3 39.6333 54.6333 15.0000 1
11 200002 2 5 39.6333 54.6333 15.000 0
12 200002 3 4 54.6333 65.2666 10.6333 1
13 200002 3 5 54.6333 65.2666 10.6333 0
14 200002 4 5 65.2666 71.2000 5.9334 1
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The state table for NEW BOS data is summarised by the frequencies in
Table (6.2).

Table 6.2: The state table for BOS data.

To state
From state 1 2 3 4 5
1 72 103 0 0 29
2 0 15 77 0 11
3 0 0 9 52 16
4 0 0 0 9 41

Table 6.2 shows that there were 29 deaths from state 1, 11 deaths from
state 2, 16 deaths from state 3 and 41 deaths from state 4. The number of
transitions from stage 4 to stage 5 is highest in comparison to transition
from other stages to stage 5. There are no observations of mild, moderate

and severe BOS followed by an observation of no BOS (state 1).
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6.2.1 The exponential model

The estimated transition probability matrix of the Exponential model at t = 30

months is given in Table (6.3).

Table 6.3 : The estimated transition probability matrix of the Exponential model at

t = 30 months.
To state
1 2 3 4 5
From state

1 0.5460 0.1155 0.0894 0.0693 0.1797
2 0 0.0804 0.1793 0.3069 0.4334
3 0 0 0.0794 0.3747 0.5460
4 0 0 0 0.3850 0.6150

Table 6.3shows that

e A person in state 1, has a probability of 0.1797 of being dead after
thirty months, a probability of 0.5460 being still in state 1, a
probability of  0.1155 of being alive with mild BOS and
probabilities of 0.0894, 0.0693 of being alive with moderate/ or
severe BOS, respectively.

e A person in state 2, has a probability of 0.4334 of being dead after
thirty months, a probability of 0.0804 being still in state 2 and
probabilities of 0.1793,0.3069 of being alive with moderate/ or

severe BOS, respectively.
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e A person in state 3, has a probability of 0.5460 of being dead after
thirty months, a probability of 0.0794 being still in state 3 and a
probability of 0.3747 of being alive with severe BOS.

e A person in state 4, has a probability of 0.6150 of being dead after
thirty months and a probability of 0.3850 being still in state 4 .

The likelihood estimates of the transition intensities (estimated hazards)
between various stages, standard error and 95% confidence intervals of the

Exponential model are shown in Table (6.4).

Table 6.4: The likelihood estimates of transition intensities (estimated
hazards) between various stages, standard error and 95% confidence

intervals of the Exponential model.

Transition Confidence intervals
Transition | intensities SE Length
(estimates) L U
q12 0.0155 0.0015 0.0128 0.0189 0.0061
q1s 0.0043 0.0008 0.0030 0.0063 0.0033
q23 0.0732 0.0083 0.0586 0.0916 0.033
Q25 0.0104 0.0031 0.0058 0.0189 0.0131
Q34 0.0644 0.0089 0.0491 0.0845 0.0354
qss 0.0198 0.0049 0.0121 0.0323 0.0202
Qas 0.0320 0.0050 0.0236 0.0435 0.0199

Table 6.4 shows that transition intensity rate of moving from one state to the
next is greater than the transition intensity rate of moving to death state. It is

noticed that the SE of the transition intensities are small, the estimated
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transition intensities lie in 95% confidence intervals and the lengths of the
confidence intervals are small.
A plot of estimated transition intensities of the Exponential model is given

in Figure (6.1).

hazard
0.04
|

0.00
|

(o] 20 40 60 80
Time

Figure 6.1 A plot of estimated transition intensities of the Exponential model.

Figure (6.1) shows that transition intensity rate of moving from one state to

the next is greater than the transition intensity rate of moving to death state.

A plot of estimated cumulative hazard of transitions of Exponential model is

given in Figure (6.2).
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Figure 6.2 A plot of estimated cumulative hazard of transitions of

Exponential model.
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Figure (6.2) shows that cumulative hazard of transitions for all states are
increasing over time. Transition cumulative hazards of moving from one
state to the next is greater than the transition intensity rate of moving to

death state.

The expected duration of stay in each state in the exponential model is given
in Table (6.5).

Table 6.5: The expected duration of stay in each state in the exponential

model.
Transient
state State 1 State 2 State 3 State 4
Initial
state
State 1 50 9 8 16
State 2 - 12 10 21
State 3 - - 12 24
State 4 - - - 31

Table 6.5 shows that

e a person in state 1 is forecasted to spend 50 months in state 1, 9
months in state 2, 8 months in state 3 and finally 16 months in state
4. These results show that a person is expected to spend more time
in state 1 and state 4 compared to the time spent in other states.

e a person in state 2 is forecasted to spend 12 months in state 2,10

months in state 3, and finally 21 months in state 4. These results
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show that a person is expected to spend more time in state 4

compared to the time spent in other states.

e aperson in state 3 is forecasted to spend 12 months in state 3, 24

months in state 4.

e aperson in state 4 is forecasted to spend 31 months in state 4.

The distribution of individuals in all states in the exponential model at time
t = 30 months according to initial state at time t = 6 months is given in

Table (6.6).

Table 6.6 : The distribution of individuals in all states in the exponential

model at time t = 30 months according to initial state at time t = 6 months.

State at Time t = 30 Initial
State at population
Timet =6
ime s, S, Ss Sa Ss sizes
S1 111 24 18 14 37 204

Table 6.6 shows the distribution of individuals in all states at time ¢t = 30
months according to initial state at time ¢t = 6 months. It is noticed that
State 1 has the highest number of individuals. Since BOS is assumed to
occur beyond six months after transplant, all individuals start from state 1 at

time t = 6 months.
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6.2.2 The Weibull model

The estimated parameters of the Weibull model are given in Table (6.7).

Table 6.7: The estimated parameters of the Weibull model

Parameters ML estimate
a 0.6368
Ao 0.0473
s 0.0557
Ays 0.0654
Azs 0.0770
A4 0.0905
A3s 0.1064
Aas 0.1252

The estimated transition probability matrix of the Weibull model at t = 30
months is given in Table (6.8).

Table 6.8 : The estimated transition probability matrix of Weibull model at

t = 30 months.
To state
From state 1 2 3 4 5
1 0.4090 0.1100 0.0270 0.0115 0.4426
2 0 0.2866 0.0920 0.0553 0.5661
3 0 0 0.1774 0.1608 0.6619
4 0 0 0 0.3370 0.6631
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Table 6.8 shows that

A person in state 1, has a probability of 0.4426 of being dead after
thirty months, a probability of 0.4090 being still in state 1, a
probability of 0.1100 of being alive with mild BOS and probabilities
of 0.0270, 0.0115 of being alive with moderate/ or severe BOS,
respectively.

A person in state 2, has a probability of 0.5661 of being dead after
thirty months, a probability of 0.2866 being still in state 2 and
probabilities of 0.0920,0.0553 of being alive with moderate/ or
severe BOS, respectively.

A person in state 3, has a probability of 0.6619 of being dead after
thirty months, a probability of 0.1774 being still in state 3 and a
probability of 0.1608 of being alive with severe BOS.

A person in state 4, has a probability of 0.6631 of being dead after
thirty months and a probability of 0.3370 being still in state 4.
A plot of estimated transition intensities of Weibull model is given

in Figure (6.3).
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Figure 6.3 A plot of estimated transition intensities of Weibull

model.
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Figure (6.3) shows that transition intensities for all states are decreasing
over time. Transition intensity of moving from state 4 to state 5 is the
greatest.

A plot of estimated cumulative hazard of transitions of Weibull model is

given in Figure (6.4).
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Figure 6.4 A plot of estimated cumulative hazard of transitions of

Weibull model.

Figure 6.4 shows cumulative hazard of transitions for all states are
increasing over time. Transition cumulative hazards of moving from state 4

to state 5 is the greatest.
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The expected duration of stay in each state in the Weibull model is given in
Table (6.9).

Table 6.9: The expected duration of stay in each state in the Weibull model.

State 1 State 2 State 3 State 4
Initial
state
State 1 50 14 4 4
State 2 - 30 8 8
State 3 - - 18 17
State 4 - - - 37

Table 6.9 shows that

e a person in state 1 is forecasted to spend 50 months in state 1, 14 months
in state 2, 4 months in state 3 and finally 4 months in state 4. These results
show that a person is expected to spend more time in state 1 and state 2
compared to the time spent in other states.

e aperson in state 2 is forecasted to spend 30 months in state 2, 8 months in
state 3, and finally 8 months in state 4. These results show that a person is
expected to spend more time in state 2 compared to the time spent in other
states.

e aperson in state 3 is forecasted to spend 18 months in state 3, 17 months
in state 4.

e aperson in state 4 is forecasted to spend 37 months in state 4.

The distribution of individuals in all states in the Weibull model at time t = 30

months according to initial state at time ¢t = 6 months is given in Table (6.10).
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Table 6.10 : The distribution of individuals in all states in the Weibull

model at time t = 30 months according to initial state at time t = 6 months.

State at Time t = 30 Initial
State at population
u
Time t = 6 :
1me S, S, Ss S, Ss sizes
S1 83 23 6 2 90 204

Table 6.10 shows the distribution of individuals in all states at time t = 30
months according to initial state at time ¢ = 6 months. It is noticed that state
4 has the highest number of individuals. Since BOS is assumed to occur
beyond six months after transplant, all individual start from state 1 at time

t = 6 months.

7. Conclusions

The multi-state model is used to understand the progression of
several chronic diseases involving transitions across different intermediate
states indicating the severity of the disease in continuous time. The model
provides more insight into the complex event pattern and thus it can be used
as an effective tool to study the effectiveness of treatments. Parametric
multi-state models have a particular importance in chronic diseases
modelling. By direct modelling transitions intensities parametrically, one
can understand how complex disease processes evolve over time.
Incorporating time-dependent effects and extrapolation are much more

convenient within a fully specified parametric model.
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In this paper five states progression model is suggested. The
suggested model is studied in the case of continuous time non -
homogeneous multistate model based on non-homogeneous Markov
processes. A parametric time-dependent multistate models are considered to
fit a non-homogeneous Markov process where transitions are specified by
the hazard of exponential and Weibull distributions. The parameters of the
suggested model are estimated by maximum likelihood method. The
transition probabilities are derived. Some extractor quantities of the model
are derived. The estimated hazard and cumulative hazard of transitions are

obtained.

The analysis in the current paper used the BOS data set provided in
the R package msm. It is found that transition intensity rate of moving from
one state to the next is greater than the transition intensity rate of moving to
death state in the exponential model, but transition intensity of moving from
state 4 to state 5 is the greatest in Weibull model. The probabilities of
transition from state 3 to state 5 and from state 4 to state 5 are high in both
models. The expected duration of stay in state 1 is the highest compared to
the expected duration of stay in other states in both models. In both models

cumulative hazard of transitions for all states are increasing over time
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