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Abstract 

In this article, a new Bayesian approach is used to identify the 
autoregressive moving average models. Employing approximation 
error is the foundation of the suggested Bayesian methodology. We take 
into consideration presence of an approximation error when  
substituting lagged errors of the original autoregressive moving average 
model with suitably lagged residuals from along autoregression . The 
direct Bayesian identification approach is utilized for solving the 
Bayesian identification issue of autoregressive moving average 
processes  employing both informative and non-informative priors. The 
theoretical derivations of the direct Bayesian identification approach 
are carried out utilizing the aforementioned priors. We compare the 
effectiveness of the Broemeling and Shaarawy approach with proposed 
Bayesian approach for determining the orders of autoregressive moving 
average models by utilizing an actual data set and numerous simulated 
experiments. The outcomes  of simulations and actual data demonstrate  
that the suggested approach is superior to the Broemeling and Shaarawy 
approach for determining the orders of autoregressive moving average 
processes. 

 
MSC: 62M10, 62C10, 37M10, 91B84. 

 
Keywords: Autoregressive Moving Average Models, Generalized 
Least Squares (GLS) Approach, Approximate Error, Prior Distribution, 
Posterior Distribution, Bayesian Identification. 
 
1.Introduction  

 
Time series models play a significant position in the modeling of time 

series data in several fields. The literature on time series analysis can be 
classified into two categories: non-Bayesian (classical) and Bayesian 
approaches. Box –Jenkins [1976] is the most well-known non-Bayesian 
approach for analyzing time series data. It is composed of four stages: 
identification, estimation, diagnostic checking, and forecasting. In contrast, 
the foundation of Bayesian time series analysis is Bayes’ theorem. This 
theorem  integrates the likelihood function containing observable sample 
information (data) with the prior parameter distribution to acquire the 
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posterior distribution. Identification is the first step of time series analysis and 
is an essential position in time series analysis, and  the accuracy of the 
subsequent steps depends on it. Identifying an autoregressive moving average 
processes involves determining the orders p and q of an autoregressive 
moving average models. There is no ultimate optimum identification 
approach. Therefore, this article focuses solely on the Bayesian identification 
of  ARMA models applying the proposed Bayesian methodology, denoted by 
the Bayesian Generalized Least Squares (BGLS) approach, utilizing the 
approximation error's exact stochastic structure. 

 
In the literature on the Bayesian identification approach, there are 

well-known direct and indirect techniques. Diaz and Farah [1981] introduced 
the direct technique for autoregressive (AR) models, which considers the time 
series model's orders are random variables that have a known maximum and 
are unknown, and the issue with identification is to determine the posterior 
mass function of these orders. Afterward, the posterior probabilities are 
computed to determine the model's order as a point estimate by selecting the 
order with the highest probability. The direct approach has been expanded to 
seasonal autoregressive (SAR) processes by Shaarawy and Ali [2003]. The 
direct technique has been expanded to ARMA processes by Ali [2003]. The 
direct approach was expanded to include MA models by Shaarawy et al. 
[2007]. The direct approach has been extended to multivariate AR models by 
Shaarawy and Ali [2008]. Ali (2009) extended the technique proposed by 
Shaarawy et al. (2007) in order to identify the mixed ARMA (p, q) processes. 
Moreover, the direct approach has been extended to seasonal multivariate AR 
processes by Shaarawy and Ali [2015]. The direct method for determining the 
ordering of vector MA models with seasonality has been expanded by 
Shaarawy et al. [2021]. The direct technique has been extended to MA models 
by Al Bassam et al. [2022]. The indirect method suggested by Shaarawy and 
Broemeling [1987], which views the model's parameter number as an 
unknown constant with a known maximum. Ismail et al. [2016] have 
extended the indirect approach to moving average (MA) processes utilizing a 
suggested Bayesian methodology to identify moving average (MA) 
processes. In this article, we utilize the direct Bayesian approach  to determine 
the autoregressive moving average (ARMA) models' orders. Broemeling and 
Shaarawy [1988] introduced  an approximation approach to eliminate the 
nonlinearity of errors in the model. This approximation method is based on 
calculating the residuals recursively using nonlinear least squares estimates 
NLSE's and then replacing the lagged errors of the model with their 
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corresponding lagged residuals. This method disregards the estimation error 
that occurs when true errors are substituted by their estimates. 

 
Ismail et al. [2015] have expanded the direct approach to  moving 

average (MA) processes utilizing a proposed Bayesian methodology to 
identify moving average models. The technique's foundation is the 
substitution of suitably lagged residuals from a long autoregressive model for 
the lagged errors of the original MA model. In contrast to Broemeling and 
Shaarawy [1988], the precise structure of the approximation error when 
substituting  genuine errors with matching residuals is obtained  and utilized  
in the derivation of the posterior probability mass function of the model order. 
This article's primary goal is to establish Bayesian GLS identification for the 
ARMA model using the derived exact stochastic structure of approximation 
(estimation) error. 

 
In numerous fields, including business, economics, engineering, and 

the natural sciences, an autoregressive moving average processes, often 
known as ARMA (p, q), is widely utilized for modeling time series data. The 
main issue with Bayesian time series identification of ARMA models is that 
the model errors are nonlinear functions in the model coefficients, and the 
likelihood function is complex and analytically intractable. Consequently, 
numerical integration is required for Bayesian identification. 

 
Ismail (2009, 2012) proposed the Bayesian Generalized Least Squares 

(BGLS) method to estimate the moving average processes . Ismail and Abd 
El-Aziz (2010) have extended the proposed methodology to estimate 
autoregressive moving average models. The innovation substitution (IS) 
method, which was introduced by Koreisha and Pukkila (1989), is the 
foundation of this methodology. It is a quick and simple way to estimate 
errors by employing the ordinary least squares (OLS) approach rather than 
the costly nonlinear least squares estimates (NLS'E) used in Broemeling and 
Saharawy's method. Ismail et al. [2015] have expanded the direct approach to  
moving average (MA) processes utilizing the proposed Bayesian 
methodology BGLS to determine moving average processes. In contrast to 
Broemeling and Shaarawy [1988], the posterior probability mass function of 
the model order is derived using the precise structure of the approximation 
error when actual errors are substituted with corresponding residuals.  
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This article's primary goal is to propose a new Bayesian approach 
BGLS for the identification of ARMA processes utilizing the derived exact 
stochastic structure of approximation (estimation) error. This proposed 
approach depends on substituting lagged errors of the original autoregressive 
moving average processes with lagged residuals from a long autoregression. 
To demonstrate and evaluate the effectiveness of the suggested technique, it 
is compared to the Broemeling and Shaarawy methods using a real data set 
and many simulation studies. 

 
The article's remaining sections are sorted as follows: In Section 2, the 

suggested method is presented, the autoregressive moving average processes 
are discussed, and the approximation (estimation) error is driven. The 
approximate conditional likelihood function is shown in Section 3, while 
Section 4 shows the direct Bayesian identification method.  The simulation 
study is presented in Section 5. The details about real data used for Bayesian 
identification and results derived from this study are clarified in Section 6.  
Finally, some conclusions are displayed in Section 7. 

 
2. Autoregressive Moving Average Models and The 
Approximation Error 
     
     An autoregressive moving average of order p and q for a time series ( 𝑦  ), 
labeled as ARMA (p, q), able to represent in the compact form shown below 
[see Box and Jenkins (1976)]: 
 

Φ (𝐵)𝑦 = Θ (B)ε                                            (1) 
 

Where B is the backshift operator,  denoted as  𝐵 𝑦 = 𝑦 , the autoregressive 
polynomial of order p  is Φ (B) = 1 − ϕ B – ϕ B  − ⋯ − ϕ B  , the moving 
polynomial of order is  Θ (B) = 1 − θ B – θ B  − ⋯ − θ B  , the errors ε ′𝑠   
are assumed to i.i.d  normally distributed variable with zero mean and 
variance τ , where 𝜏 = 1

𝜎 > 0  is the precision parameter, 𝑦 𝑠 are 

observations. If  Φ (B) has roots that are not inside the circle of unit, then the 
ARMA (p, q) model is stationary lay outside of the circle of unit. If  Θ (B)  
has roots that are not inside the circle of unit, then the model is invertible. 
Using n observations  𝑌 = (𝑦 , 𝑦 , … , 𝑦 ) to calculate values the orders of 
the ARMA model p and q, which are unknown. 
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Following Ismail’s approach [2009, 2010,2015] depends on replacing the 
original model's  lagged errors with the suitable lagged residual from a long 
autoregression of order L as : 

𝑦 = 𝜋   𝑦 + 𝜀 ,                                                      (2) 

Where 𝜋  , 𝜋 , … , 𝜋   are the estimated  parameters of the autoregression of 
order L, 𝜀  is estimate of  𝜀   and the choice of L is determined as √𝑛  has 
been validated in Koreisha and Pukkila [1990a, 1990b] utilized extensive 
simulation studies. 
 

 The approach of Ismail does not disregard the estimation(approximation) 
error, denoted by  𝑎  for short, that arise when replacing the error with their 
corresponding lagged residuals. It  uses the innovations substitution 
estimation (IS) suggested  by Koresiha and Pukkila (1989), which is a quick 
and easily implemented estimation approach for estimating the errors, as 
opposed to the expensive nonlinear least squares estimates utilized by 
Broemeling and Saharawy’s approach. 
Define  𝑎   as 

a  = ε − ε                                                                                    (3) 
Using Eq. (2), 𝜀  can be expressed as  

𝜀 = 𝑦 − 𝜋   𝑦 ,                                                                        

                          𝜀 = 𝑦 − (𝜋 𝑦 +  𝜋 𝑦 + ⋯ + 𝜋 𝑦 ) 
 

𝜀 = Π (𝐵)𝑦                                                                                  (4) 
              
Where  Π (𝐵) = [1 − 𝜋 𝐵 − 𝜋 𝐵 − ⋯ − 𝜋 𝐵 ]  is  a polynomial function 
of  order  L. By utilizing (1) and replacing 𝑦   in (4), we obtain 

 

𝜀 = Π (𝐵)
Θ (B)

Φ (B)
ε                                                                       (5) 

 Using (3) and (5), the approximation error can be represented as a function 
in ε  as follows:  

𝑎 = ε − Π (𝐵)
( )

( )
ε                       

                      𝑎 = 1 − Π (𝐵)
( )

( )
ε                                                            (6) 
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3.An Approximate Conditional Likelihood Function 
  
         In this section, the approximate conditional likelihood function for 
ARMA processes is derived,  replacing for 𝜀  in (1) using (3), (5) and 
(6) results in the model 

 
                                               Φ (𝐵)𝑦 = Θ (B)ε  

 Φ (𝐵)𝑦 = Θ (B)[𝜀 + 𝑎 ] 
                                                   Φ (𝐵)𝑦 = Θ (B)𝜀   + Θ (B)𝑎                   (7)  

Φ (𝐵)𝑦    = − 𝜃  𝜀̂ + 𝜀  + Θ (B) 1 − Π (𝐵)
Θ (B)

Φ (B)
ε  

 Φ (𝐵)𝑦    = − ∑ 𝜃  𝜀̂ + Π (𝐵)
( )

( )
ε    + Θ (B) 1 − Π (𝐵)

( )

( )
ε  

  Φ (𝐵)𝑦    = − 𝜃  𝜀̂ +
Π (𝐵) Θ (B)

Φ (B)
 + Θ (B) 1 −

Π (𝐵) Θ (B)

Φ (B)
ε  

     Φ (𝐵)𝑦    = − ∑ 𝜃  𝜀̂ +
( ) ( )

( )
 + Θ (B) − Θ (B)

( ) ( )

( )
ε  

 Φ (𝐵)𝑦    = − 𝜃  𝜀̂ + Θ (B) + 1 − Θ (B)
Π (𝐵) Θ (B)

Φ (B)
ε  

  Φ (𝐵)𝑦    = − 𝜃  𝜀̂ + 𝜂  

1 − ϕ B – ϕ B  − ⋯ − ϕ B 𝑦    = − 𝜃  𝜀̂ + 𝜂  

𝑦    − 𝜙  𝑦  = − 𝜃  𝜀̂ + 𝜂  

  
Substituting for   Φ(𝐵), Θ (B), 𝑎   𝑎𝑛𝑑 𝜀   in (7), we get 

𝑦     = 𝜙  𝑦 − 𝜃  𝜀̂ + 𝜂                                          (8) 

Where  

             𝜂 = Θ (B) + 1 − Θ (B)
Π (𝐵) Θ (B)

Φ (B)
ε                                    (9) 

          𝜂 = Θ (B)
Φ (B)

Φ (B)
+ 1 − Θ (B)

Π (𝐵) Θ (B)

Φ (B)
ε    
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         𝜂 = Θ (B)Φ (B) + 1 − Θ (B) Π (𝐵) Θ (B)
 

( )
   

𝜂 Φ (B) = Θ (B)Φ (B) + 1 − Θ (B) Π (𝐵) Θ (B)   ε   

 
𝜂 Φ (B) = Ψ ∗(𝐵)  ε                         

η = ϕ  η + Ψ ∗(B)  ε                                                                (10) 

η = ϕ  η + ψ  ε

∗

+  ψ  ε                                                (11) 

Where  

Ψ ∗(B) = Θ (B)Φ (B) + 1 − Θ (B) Π (B) Θ (B)                      (12) 

 
𝑞∗ = 𝑚𝑎𝑥[(𝑝 + 𝑞), (2𝑞 + 1)] , 𝜓 = 1, and 𝜓 𝑠  are determined by contrasting 
the coefficients in (11) 

 
  Letting the initial residuals be zeros, i.e.,  𝜀 = 𝜀 = ⋯ = 𝜀 ∗ = 0, 

where 𝑞∗ > 𝑝 + 1, the model (1) can be represented  in a matrix with the 
following form  

 
   𝑌 = 𝑋𝛾 + 𝜂                                               (13) 

 
Where Y = y , y , … , y , y ,  γ = ϕ , ϕ , … , ϕ , θ , θ , … , θ   

is the parameter vector,   η = η , η , … , η , η , X is (n − p) × (p + q) 
matrix with 𝑡  row               𝑦 , 𝑦 , … , 𝑦 , −𝜀 , −𝜀 , … , −𝜀 ,    
    𝑡 = 𝑝 + 1, 𝑝 + 2, … , 𝑛.  The error vector 𝜂 has a multivariate normal 
distribution with zero mean vector and matrix of variance-covariance 
[Σ = 𝜏 Ω] , the matrix   Ω is a symmetric positive definite Toeplitz matrix 
and the covariance structure depends on the orders of ARMA models [for 
details Wei (2006)]. Using model (13), the likelihood function can be written 
as: 

𝐿 𝛾(𝑝, 𝑞), 𝑝, 𝑞, 𝜏 𝑌 ∝ 𝜏  exp −
𝜏

2
𝑌 − 𝑋𝛾(𝑝, 𝑞) Ω 𝑌 − 𝑋𝛾(𝑝, 𝑞)        (14)   

 
where 𝛾(𝑝, 𝑞) = 𝜙 , 𝜙 , … , 𝜙 , 𝜃 , 𝜃 , … , 𝜃 ∈ 𝑅 , 𝑝 = 1,2, … 𝐾 , 

𝑞 = 1,2, … , 𝐾 , 𝜏 > 0, where 𝐾  , 𝐾  are the maximum potential value of p, 
q in the case of the direct identification technique. Because the components 
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of  are nonlinear functions in the model coefficients  

(𝜙 , 𝜙 , … , 𝜙 , 𝜃 , 𝜃 , … , 𝜃 ) , the likelihood function (14) is a 
complicated function in 𝛾(𝑝, 𝑞). Consequently, in order to do Bayesian 

estimate for 𝛾(𝑝, 𝑞) , numerical integration is required. This problem can be 

resolved by obtaining an estimated matrix 𝛺 by substituting the elements of  
𝛾(𝑝, 𝑞) in the matrix  with by their estimates  𝛾(𝑝, 𝑞) obtained by IS 

approach. This is because the IS estimates for ARMA parameters are 
produced by applying the OLS method to the ARMA model after substituting 
lagged errors with corresponding lagged residuals from along autoregressive.   
 

an approximate yields in (14) 𝛺by its estimate  the matrix Substituting 

conditional likelihood function that like the following: 
 

𝐿∗ 𝛾(𝑝, 𝑞), 𝑝, 𝑞, 𝜏 𝑌 ∝ 𝜏  exp −
𝜏

2
𝑌 − 𝑋𝛾(𝑝, 𝑞) Ω 𝑌 − 𝑋𝛾(𝑝, 𝑞)   (15)   

The direct application of (15) is challenging since it requires the 
Toeplitz matrix 𝛺 to be inverted, which can be computationally demanding, 
especially for high n. Nevertheless, the precise transformation matrix R, such 
as that 𝑅 𝑅 = Ω  was determined by Galbraith and Zinde-Walsh [1992]. It 
is feasible to create an estimated transformation matrix  𝑅  using the IS 
parameters estimates, such that 𝛺 = 𝑅 𝑅. Consequently, the following is 
an approximate conditional probability function: 

 

𝐿∗ 𝛾(𝑝, 𝑞), 𝑝, 𝑞, 𝜏 𝑌 ∝ 𝜏  exp −
𝜏

2
𝑌 − 𝑋𝛾(𝑝, 𝑞) 𝑅 𝑅 𝑌 − 𝑋𝛾(𝑝, 𝑞)  (16)   

 

𝐿∗ 𝛾(𝑝, 𝑞), 𝑝, 𝑞, 𝜏 𝑌 ∝ 𝜏  exp −
𝜏

2
𝑌∗ − 𝑋∗𝛾(𝑝, 𝑞) 𝑌∗ − 𝑋∗𝛾(𝑝, 𝑞)        ( 17)  

Where 𝑌∗ = 𝑅𝑌  𝑎𝑛𝑑 𝑋∗ = 𝑅𝑋. 
 
The approximation conditional likelihood function employed by Broemeling 
and Shaarawy [1988] is a simplification of (16) when 𝑅 = Ω = I  where 
I  is the unit matrix of order n-p. 
 
 
 
 
 



 
 
 
 
 
 

٣٢٠٢الرابع ديسمبر العدد                مجلة العلمية التجارة والتمويل                            ال  

(PRINT) :ISSN 1110-4716                       212                        (ONLINE): ISSN 2682-4825 
 

 

4. Direct Bayesian Identification  
 

This technique considers the orders p and q of the mixed ARMA 
models are unidentified random variables with maximum values that are 
known. The challenge is to determine the posterior probabilities over all 
conceivable orders by determining the joint posterior probability function of 
orders p and q. subsequently the model order is chosen, corresponding to the 
highest posterior probability as the identified orders. In other words, the 
identified model selects the value of (p, q) with the highest probability. In 
contrast to Broemeling and Shaarawy [1988], this section presents the direct 
Bayesian identification procedure for the mixed ARMA processes utilizing 
the suggested approach, it is dependent on the innovation substitution method 
(IS) and takes  into consideration estimate (approximation) error into. The IS 
estimates for the ARMA parameters are obtained via the ordinary least 
squares (OLS) approach after appropriate lagged residuals from a long 
autoregressive are substituted for lagged errors in the ARMA model. 

 
Using both normal-gamma and Jefferys’ priors, the posterior 

distribution of  an autoregressive moving average model is calculated. The 
rationale for using normal gamma prior to the approximate conditional 
likelihood function (15) is that a function in the parameters is a normal gamma 
density (see Broemeling [1985]).  The following  is an appropriate choice for 
proper prior distribution to conjugate prior distribution: 

 
Consider the following prior assumptions: 
 
 The conditional prior density of 𝛾(𝑝, 𝑞)given 𝑝, 𝑞, 𝑎𝑛𝑑 𝜏  has a 

multivariate normal prior distribution with a vector of mean  𝑀(𝑝, 𝑞)  and 
precision matrix 𝜏𝑉(𝑝, 𝑞) (i.e.  matrix of variance-covariance   Σ =
1

precision matrix = 𝜏 𝑉 (𝑝, 𝑞)) ,denoted by 𝜉 𝛾(𝑝, 𝑞)|𝑝, 𝑞, 𝜏 ∼

𝑁 𝑀(𝑝, 𝑞), 𝜏 𝑉 (𝑝, 𝑞) , where 𝜏 > 0, 𝑉(𝑝, 𝑞) is a square positive 
definite matrix of order (p+q) as the following form: 

 

ξ γ(p, q)|p, q, τ =
τ |V(p, q)|

(2π)
exp −

τ

2
γ(p, q) − M(p, q) V(p, q) γ(p, q) − M(p, q)       (18) 

 Let us assume the independence of p, q, and τ. Consequently, the 
marginal prior density of 𝜏  has a gamma density with parameters  𝛼 𝑎𝑛𝑑 𝛽  
as the following: 
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𝜉 (𝜏) ∼ 𝐺𝑎𝑚𝑚𝑎 (𝛼, 𝛽)                                 
 

𝜉 (𝜏) ∝ 𝜏 𝑒 , τ >  0 , α > 0 and β >  0             (19) 
 The marginal prior probability mass function density of 𝑝 𝑎𝑛𝑑 𝑞   

is uniform. 
 

ξ (p, q) = K x K                                                                   (20) 
𝑝 = 1, 2, … , 𝐾 ,𝑞 = 1, 2, … , 𝐾  

The direct technique assigns a probability to each pair of values of (p, q) or, 
more specifically, to each of the K1xK2 of the ARMA process. 

Using these quantities, we assert the subsequent theorem. 
 
The approximate marginal posterior probability mass function of the 
autoregressive moving average(ARMA) model orders p and q, which can be 
obtained by integrating out 𝛾(𝑝, 𝑞) and 𝜏, respectively, as shown by the 

subsequent theorem. 
 
Theorem:  Given n observation 𝑌 = (y ,  y , … ,  y )from autoregressive 
moving average  (ARMA) model given by (1), an approximate conditional 
likelihood function in (17) and the joint prior density given by (21), then the 
approximate marginal posterior probability mass function of the 
autoregressive moving average orders p and q is 

 

𝜉∗  𝑝, 𝑞 𝑌 ∝  
| | Г

( )

  | ( , )| ( )

[𝐶 −  B A B]
( )

                                           (21)  

𝑝 = 1, 2, … , 𝐾 , 𝑞 = 1, 2, … , 𝐾  
 

Where 
 

A = X∗ X∗ + 𝑉(𝑝, 𝑞) , B = X∗ Y∗ + 𝑉(𝑝, 𝑞) 𝑀(𝑝, 𝑞) , and C = Y∗ Y∗ +

𝑀(𝑝, 𝑞) 𝑉(𝑝, 𝑞)𝑀(𝑝, 𝑞) +  2𝛽. 
∵ 𝑌∗ = 𝑅𝑌  , 𝑋∗ = 𝑅𝑋 , 𝑎𝑛𝑑 𝛺 = 𝑅 𝑅. 

∴ Y∗ Y∗ = (𝑅𝑌) 𝑅𝑌 = 𝑌 𝑅 𝑅𝑌 = 𝑌 𝛺 𝑌 

X∗ X∗ = (RX) RX = X R RX =  X Ω X  

X∗ Y∗ = (𝑅𝑋) 𝑅𝑌 = 𝑋 𝑅 𝑅𝑌 = 𝑋 𝛺 𝑌 
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Proof: The following procedures can be used to prove the theorem 

   Multiplying Eq. (18) by both Eq. (19) and Eq. (20), The joint prior 
distribution of the model parameters 𝛾(𝑝, 𝑞), 𝑝, 𝑞 𝑎𝑛𝑑 𝜏  is as follows: 

              
ξ γ(p, q), p, q, τ ∝ K  K τ |V(p, q)| exp − γ(p, q) − M(p, q) V(p, q) γ(p, q) − M(p, q) + 2β       (22)              

 
where 𝛾(𝑝, 𝑞) = 𝜙 , 𝜙 , … , 𝜙 , 𝜃 , 𝜃 , … , 𝜃 ∈ 𝑅 , 𝑝 = 1,2, … 𝐾 ,  

𝑞 = 1,2, … , 𝐾 ,   where 𝐾  , 𝐾  are the biggest possible orders of p, q, 
respectively. 

 Combining the approximate likelihood function 𝐿∗ 𝛾(𝑝, 𝑞), 𝑝, 𝑞, 𝜏 𝑌  

in Eq. (17), with the joint prior density 𝜉 𝛾(𝑝, 𝑞), 𝑝, 𝑞, 𝜏  in Eq. (22) 

through  Bayes theorem yields an approximate joint posterior distribution 
of the parameters  𝛾(𝑝, 𝑞), 𝑝, 𝑞, 𝑎𝑛𝑑 𝜏 as follows: 

   𝜉∗ 𝛾(𝑝, 𝑞), 𝑝, 𝑞, 𝜏 𝑌 ∝ 𝐿∗ 𝛾(𝑝, 𝑞), 𝑝, 𝑞, 𝜏 𝑌  𝜉 𝛾(𝑝, 𝑞), 𝑝, 𝑞, 𝜏    
   

     𝜉∗ 𝛾(𝑝, 𝑞), 𝑝, 𝑞, 𝜏 𝑌 ∝
( )

|𝑉(𝑝, 𝑞)|  

exp −
τ

2
γ(p, q) − M(p, q) V(p, q) γ(p, q) − M(p, q) + 2β + Y∗ − X∗γ(p, q) Y∗ − X∗γ(p, q)      (23) 

 

The above is an approximate joint posterior distribution of the parameters  
𝛾(𝑝, 𝑞), 𝑝, 𝑞 , 𝑎𝑛𝑑 𝜏  has  also the normal gamma distribution.  

 The identification of the terms in the exponent of the approximate joint 
posterior distribution and reformulation in a quadratic form is as follows: 

 
1- Y∗ − X∗γ(p, q) Y∗ − X∗γ(p, q) = Y∗ Y∗ − 2γ(p, q) X∗ Y∗ + γ(p, q) X∗ X∗ γ(p, q) 

2- γ(p, q) − M(p, q) V(p, q) γ(p, q) − M(p, q)  

       = γ(p, q)  V(p, q) γ(p, q) − 2γ(p, q) V(p, q)M(p, q) + M(p, q) V(p, q) M(p, q) 

3 − 2β 

When adding 1, 2, and 3, we obtain: 

𝜉∗ 𝛾(𝑝, 𝑞), 𝑝, 𝑞, 𝜏 𝑌 ∝
𝜏

(2𝜋)
|𝑉(𝑝, 𝑞)|       𝑒𝑥𝑝 −

𝜏

2
𝐶 − 2 𝛾(𝑝, 𝑞) 𝐵 + 𝛾(𝑝, 𝑞) 𝐴𝛾(𝑝, 𝑞)  (24) 
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Where  
 A = X∗ X∗ + 𝑉(𝑝, 𝑞)  

B = X∗ Y∗ + 𝑉(𝑝, 𝑞) 𝑀(𝑝, 𝑞)  

C = Y∗ Y∗ + 𝑀(𝑝, 𝑞) 𝑉(𝑝, 𝑞)𝑀(𝑝, 𝑞) +  2𝛽 

 Completing the exponent square  in (24) with regard to 𝛾(𝑝, 𝑞) and then 

integrate out over 𝛾(𝑝, 𝑞)and 𝜏 , respectively. The joint posterior 

distribution of 𝛾(𝑝, 𝑞), 𝑝, 𝑞  𝑎𝑛𝑑 𝜏 becomes.  

 

𝜉∗ 𝛾(𝑝, 𝑞), 𝑝, 𝑞, 𝜏 𝑌 ∝
𝜏

(2𝜋)
|𝑉(𝑝, 𝑞)|   𝑒𝑥𝑝 −

𝜏

2
(𝐶 − 𝐵 𝐴 𝐵)  

          𝑒𝑥𝑝 −
𝜏

2
𝛾(𝑝, 𝑞) − 𝐴 𝐵 𝐴 𝛾(𝑝, 𝑞) − 𝐴 𝐵                         (25) 

Following that, integration regarding 𝛾(𝑝, 𝑞), the marginal joint posterior 

distribution of 𝑝, 𝑞 𝑎𝑛𝑑 𝜏 𝑖𝑠  

𝜉∗ 𝑝, 𝑞, 𝜏 𝑌 ∝  
𝜏 |𝑉(𝑝, 𝑞)|

(2𝜋) |𝐴|
   𝑒𝑥𝑝 −

𝜏

2 
 [𝐶 −  B A B]  

Afterward, eliminating 𝜏  leads by integration regarding 𝜏, 𝑤𝑒 𝑔𝑒𝑡 𝑡ℎ𝑒  
marginal posterior mass function of p and  𝑞 

 

𝜉∗  𝑝, 𝑞 𝑌 ∝  
|𝐴| Г

(2𝛼 + 𝑛 − 𝑝)
2

  |𝑉(𝑝, 𝑞)| (𝜋)
[𝐶 −  B A B]

( )

                                   

  
The proof has been completed. 
 
When there is minimal knowledge regarding hyperparameters,  namely 
𝑀(𝑝, 𝑞),  𝑉(𝑝, 𝑞), 𝛼 𝑎𝑛𝑑 𝛽 , one may use Jefferys’ prior replaces Normal-
Gamma prior distribution. Consequently, the Jefferys’ prior distribution is  
 

𝜉 𝛾(𝑝, 𝑞), 𝑝, 𝑞, 𝜏 ∝ 𝜏                                                                                    (26) 

Therefore, Jefferys’ prior (26) is a particular case of the joint  prior 
distribution of the parameters γ(p, q), p, q, and τ  when 𝛽 = 0, 𝑉(𝑝, 𝑞) = 0, 

and 𝛼 = −(𝑝 + 𝑞)/2., as demonstrated by the following corollary. The 
following corollary shows that. 
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Corollary: The approximate marginal posterior probability mass function of 
the autoregressive moving average orders p and q can be determined by 
combining the approximate likelihood function (17) and the non-
informative prior density (26), which is expressed as follows: 

𝜉∗∗  𝑝, 𝑞 𝑌 ∝  
|A∗|

(2π)
C∗ −  B∗ A∗ B∗  

( )
 
Г

(n − 2p − q)

2
 

  Where A = X∗ X∗, B = X∗ Y∗ and C = Y∗ Y∗. 
 

Proof: We can establish the corollary from the above theorem by replacing 
when 𝛽 = 0, 𝑉(𝑝, 𝑞) = 0, and 𝛼 = −(𝑝 + 𝑞)/2 
 
5. The Numerical Analysis and Simulation 
 

This section's objective  is to evaluate and compare the effectiveness 
and accuracy of the direct identification technique for the ARMA process 
utilizing the three Bayesian identification methods. The proposed Bayesian 
Generalized Least Squares (BGLS) method is illustrated in section 4. 
Broemeling and Shaarawy’s (1988) is the second one. The second method, 
known as BS-NLS, employs Nonlinear Least Squares (NLS) estimates to 
estimate the errors, which is discussed in section 3. The third method, known 
as BS-IS, is a modified version of Broemeling and Shaarawy's (1988) method 
where IS estimates are employed to estimate the errors rather than Nonlinear 
Least Squares (NLS) estimates. The aim is accomplished via various 
simulation studies. Additionally, the effectiveness of the suggested Bayesian 
approach (BGLS), as detailed in section (3), is the main focus of this part. 
The suggested method is compared to Broemeling and Shaarawy's approach, 
denoted as (BS-NLS), which calculates the errors using nonlinear least 
squares estimates. The first subsection introduces the effectiveness criterion 
employed in the study. The second subsection presents the simulation design 
and objectives. Finally, the results and the comments are explained in detail 
in the third section. 

5.1 Effectiveness Criterion 

 The effectiveness study employed the percentage of correct model 
identification as the effectiveness criteria to assess and contrast the 
performance of the aforementioned Bayesian identification technique. 
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  Assuming n is the number of times where we choose the correct 
model, then the percentage of correctly identified models as follows: 

𝑃 = × 100. 

Where N is the total number of series generated from the original 
autoregressive moving average (ARMA) model. 

5.2 Simulation Design  

The assessment  and comparison are based on various simulation 
experiments. The following steps establish the simulation process 

1. A time series following an autoregressive moving average ARMA 
process is generated. There are two phases in the generating process: 

 After that,  (n+200) observations are generated . 

 subsequently that, in order to eliminate the initialization impact, the 
first 200 observations are removed. 

2. For determining which model is best suited to the generated time 
series, the methods BGLS, BS-NLS, and BS-IS are utilized  in the 
direct technique. The sample size (n) for the time series lengths is 
determined to be 50, 100, 150, 200, and 300. These time series lengths 
were chosen to reflect the range of time series lengths, from tiny to 
enormous. There are a thousand realizations, and it is assumed that 
the maximum order, which is known, equals three and four times, 
respectively. 

3. The first two stages are repeated 1000 times. 
4. Lastly, for each time series, we determine the percentage of correct 

identification using each approach.  

Table (1) shows the ARMA models used in the simulation 
investigation with various orders and parameter values. The parameters of 
this model are chosen inside the invertibility domain.  

Table (1): The ARMA (p,q) Model's Simulation Design   

Model Order Phi1 Phi2 Theta1 Theta2 
ARMA(2,2) p=2, q=2 0 -0.2 0 0.9 
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In  experiment, the precision parameter was set to one and Jeffery’s’ prior 
was utilized. 

Various priors for the orders are used when  employing the direct 
approach and checking its sensitivity to the prior choice, and the subsequent 
three priors are used 

 The conditionally prior density of 𝛾(𝑝, 𝑞) given 𝑝, 𝑞, 𝑎𝑛𝑑 𝜏  has a 

multivariate normal prior distribution with a vector of mean  𝑀(𝑝, 𝑞)  and 
precision matrix 𝜏𝑉(𝑝, 𝑞) (i.e. matrix of variance-covariance  Σ =

1
precision matrix = 𝜏 𝑉 (𝑝, 𝑞)) ,denoted by 𝜉 𝛾(𝑝, 𝑞)|𝑝, 𝑞, 𝜏 ∼

𝑁 𝑀(𝑝, 𝑞), 𝜏 𝑉 (𝑝, 𝑞) , where 𝜏 > 0, 𝑉(𝑝, 𝑞) is a square positive definite 
matrix of order (p+q) as following form: 

 

ξ γ(p, q)|p, q, τ =
τ |V(p, q)|

(2π)
exp −

τ

2
γ(p, q) − M(p, q) V(p, q) γ(p, q) − M(p, q)  

 
 Let us assume the independence of p, q, and τ. Consequently, the 
marginal prior density of 𝜏  has a gamma density with parameters  𝛼 𝑎𝑛𝑑 𝛽  
as the following: 

          𝜉 (𝜏) ∼ 𝐺𝑎𝑚𝑚𝑎 (𝛼, 𝛽)                       
 

            𝜉 (𝜏) ∝ 𝜏 𝑒 , τ >  0 , α > 0 and β >  0 
  The marginal prior probability mass function density of 𝑝 𝑎𝑛𝑑 𝑞   

is uniform.                                                       
𝜉 (𝑝, 𝑞) = 𝐾 𝑥 𝐾  

𝑝 = 1, 2, … , 𝐾  
𝑞 = 1, 2, … , 𝐾  

The direct technique assigns a probability to each pair of values of (p, q) or, 
in other words, to each of the K1xK2 of the ARMA model. 

The GAUSS/ARIMA library simarma procedure was employed to simulate 
all ARMA models, and GAUSS 10 was utilized for all computations. 

5.3 Results of the simulation 

This section summarizes and discusses the simulation studies' results 
conducted for ARMA sources. The direct Bayesian identification technique 
utilizing BGLS,  BS-NLS, and  BS-IS approaches is employed to determine           
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a model for the series after 1000 series are generated from a particular ARMA 
(2,2) processes. 

For each series, the marginal posterior mass function of the orders of 
the ARMA process (p=1, 2, ..., K1 and q=1, 2, ..., K2) is computed using the 
direct technique, assuming that the maximum order is K1=3, K2=3, and K1=4, 
K2=4, with various prior functions for the order p, q. The ARMA process  that 
has the highest probability is chosen as the identified model. For the direct 
technique, the ratio of correct identification P is calculated. 

Table (2) includes  the identification process' results conducted for the 
ARMA models. It includes the results of the three methods mentioned above. 
It is divided into five blocks corresponding to the five aforementioned time 
series lengths. The cells of the table include the ratio of the correct 
identification. The columns of the table are divided according to the method 
and the considered maximum order. 

Table (2): Percentages of Correct Identification for ARMA(2,2) Models   
[Tau=1]  

                 
 

N 

BGLS BS-NLS BS-IS   

 Max=3 Max=4  Max=3 Max=4 Max=3 Max=4   
 PRIOR 1   
 50 73.8 32.7 59.6 47.6 51.8 48.1   
 100 81.4 68.1 72.8 76 76.2 43.5   
 150 80.7 90.9 75.6 83.1 81.2 47.6   
 200 80.7 94.3 74.6 83.1 78.0 46.4   
 300 100 100 100 100 100 100   
   Max=3 Max=4 Max=3 Max=4 Max=3 Max=4   
 PRIOR 2   
 50 75.8 36.7 66.3 47.9 62.8 76.2   
 100 87.3 56.3 77.9 67.6 81.5 40.5   
 150 87.3 88.5 81.1  78.7 87.9 62.4   
 200 86.6 96.9 81.2 83.6 87.5 61.2   
 300 100 100 100 100 100 100   
   Max=3 Max=4 Max=3 Max=4 Max=3 Max=4   
 PRIOR 3    
 50 73.8 32.7 59.6 47.6 51.8 48.1   
 100 81.4 68.1 72.8 76 76.2 43.5   
 150 80.7 90.9 75.6 83.1 81.2 47.6   
 200 80.7 94.3 74.6 83.1 78.0 46.4   
 300 100 100 100 100 100 100   

Based on the previous table: 
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1. As n increases, the percentages of correct identification for direct 
techniques increase. The results with max equals 3 are superior to 
those with max equals 4 because it is simpler for  identification 
technique to choose  between a lower number of models. 

2. Both BGLS and BS-IS provide slightly better identification for each 
technique at the same time series length compared to the results 
obtained using BS-NLS. Therefore, it can be concluded that the BGLS 
approach enables the identification technique to produce a superior 
identification for the model.  
 
The remainder of this section demonstrates the findings of the three 

simulation studies in detail. Examining the results of Table 2, it is noticed that 
as the time series length n grows , correspondingly rises the ratio of the correct 
identification of both BGLS and BS-NLS increases. For each time series 
length, the results of the direct procedure utilizing the second prior are better 
than those obtained using the first prior and the third prior .The maximum 
order 3 results are superior to those of the maximum order 4 results since it is 
simpler for any identification approach to choose  among a smaller number 
of models.  Furthermore, the Broemeling and Shaarawy approach BS-NLS 
yields lower percentages of correct identification than the suggested method 
BGLS. Consequently, it can be concluded that the BGLS method achieved 
the identification approach to obtain a more accurate model identification.  

 
6.Data Analysis 

 We utilize an actual dataset from the chemical field to illustrate the 
superior performance of the direct Bayesian identification technique 
employing the suggested method  over Broemeling and Shaarawy approach. 
 
Dataset: Chemical Process Concentration Readings  
This dataset shows the chemical process concentration values every two 
hours, 197 observations, as published by Box et al. (1994). The observations 
are as follows: 
 

17.0 16.6 16.3 16.1 17.1 16.9 16.8 17.4 17.1 17.0 16.7 17.4 17.2 

17.4 17.4 17.0 17.3 17.2 17.4 16.8 17.1 17.4 17.4 17.5 17.4 17.6 

17.4 17.3 17.0 17.8 17.5 18.1 17.5 17.4 17.4 17.1 17.6 17.7 17.4 

17.8 17.6 17.5 16.5 17.8 17.3 17.3 17.1 17.4 16.9 17.3 17.6 16.9 

16.7 16.8 16.8 17.2 16.8 17.6 17.2 16.6 17.1 16.9 16.6 18.0 17.2 
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17.3 17.0 16.9 17.3 16.8 17.3 17.4 17.7 16.8 16.9 17.0 16.9 17.0 

16.6 16.7 16.8 16.7 16.4 16.5 16.4 16.6 16.5 16.7 16.4 16.4 16.2 

16.4 16.3 16.4 17.0 16.9 17.1 17.1 16.7 16.9 16.5 17.2 16.4 17.0 

17.0 16.7 16.2 16.6 16.9 16.5 16.6 16.6 17.0 17.1 17.1 16.7 16.8 

16.3 16.6 16.8 16.9 17.1 16.8 17.0 17.2 17.3 17.2 17.3 17.2 17.2 

17.5 16.9 16.9 16.9 17.0 16.5 16.7 16.8 16.7 16.7 16.6 16.5 17.0 

16.7 16.7 16.9 17.4 17.1 17.0 16.8 17.2 17.2 17.4 17.2 16.9 16.8 

17.0 17.4 17.2 17.2 17.1 17.1 17.1 17.4 17.2 16.9 16.9 17.0 16.7 

16.9 17.3 17.8 17.8 17.6 17.5 17.0 16.9 17.1 17.2 17.4 17.5 17.9 

17.0 17.0 17.0 17.2 17.3 17.4 17.4 17.0 18.0 18.2 17.6 17.8 17.7 

17.0 17.4            

They have determined an ARMA (p=1,q=1) model for this dataset utilizing 
the autocorrelation function (ACF) and partial autocorrelation function 
(PACF). A time plot for the series A is displayed in Figure 1.  

Figure 1: Time series of the Chemical Process Concentration Reading 
 

 
Table displays the outcomes of the Box-Jenkins methodology, the 

Broemeling and Shaarawy approach, and the proposed approach for each 
time series. Through examination of  Table 3 results, we are able to notice 
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that the non-Bayesian (Box-Jenkins) approach and the Bayesian (BGLS 
and (BS-NLS) techniques both concur that ARMA is the choice model 
[p=1,q=1]. 

  Table 3: Identified models for this dataset with various approaches.  
 

  Series   

Max 3 4 

Technique Prior BGLS BS-NLS BS-IS BGLS BS-NLS BS-IS 

Box-Jenkins   ARMA (1,1) 

Direct 

Prior1 ARMA (1,1) 

Prior2 ARMA (1,1) 

Prior3 ARMA (1,1) 

 
7. Conclusion  

This article suggested a novel Bayesian technique for identifying 
autoregressive moving average(ARMA) processes. In contrast to 
Broemeling and Shaarawy, where the estimation errors that result from 
substituting the errors with their estimates are ignored, we suggested 
the use innovation substitution method for estimating the errors and 
exploiting the stochastic structure of the approximation error in 
establishing Bayesian identification for ARMA processes. Using the 
suggested approach, the direct Bayesian identification methodology has 
been created. Through simulation experiments, the effectiveness of the 
suggested technique has been verified and contrasted with the 
Broemeling and Shaarawy approach. The results of the simulation 
demonstrate the superiority of the suggested approach over Bromeling 
and Shaarawy's approach. We have verified the accuracy of our 
simulation studies by comparing our outcomes for Bromeling and 
Shaarawy with those found in the published literature.  
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