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Some Modified Kibria-Lukman Estimators for the
Gamma Regression Model

Abstract: This paper aims to propose the Gamma modified Kibria-
Lukman estimator according to some selected formulas of the shrinkage
parameter in order to overcome the effect of the multicollinearity
problem in the Gamma regression model. The properties of the proposed
estimator and the conditions of its superiority against the maximum
likelihood estimator, Gamma ridge estimator, and Gamma Kibria-
Lukman estimator based on the matrix of mean squared error criterion are
presented. In addition, some selected formulas for the shrinkage
parameter are used to improve the results of estimation. Moreover, a
Monte Carlo simulation experiment and an application are implemented
to assess the performance of the proposed estimator according to some
selected formulas of the shrinkage parameter compared with other
existing estimators by the scalar mean squared error criterion. The results
confirm that the proposed estimator, the Gamma modified Kibria-
Lukman estimator is preferred over other existing estimators in terms of
scalar mean squared error.

Keywords: Gamma regression, Multicollinearity, Ridge estimator,
Shrinkage parameter, Kibria-Lukman estimator.
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1. Introduction

The Gamma regression model is an appropriate model for
characterizing many life phenomena in which the response variable is
positively skewed and follows a Gamma distribution. It is well known
that when the explanatory variables are highly correlated, the problem of
multicollinearity occurs, and hence, the estimated variance of the
maximum likelihood estimator (MLE) becomes inflated and poor
statistical inference will be result. Therefore, many methods for dealing
with the effect of multicollinearity have been presented. The biased
estimation methods are considered the most widely used methods for
dealing with the problem of multicollinearity in several regression
models. Actually, there are many biased estimators that have been
introduced as alternatives to the MLE in order to achieve the best results,
such as the ridge estimator proposed by Hoerl and Kennard (1970), the
Liu estimator proposed by Liu (1993), the Liu-type estimator proposed
by Liu (2003), and the ridge-type estimator which is called the Kibria-
Lukman estimator proposed by Kibria and Lukman (2020) in the linear
regression model. In addition, many biased estimators are adopted for
generalized linear models, such as in the logistic regression model, the
logistic ridge estimator by Schaefer et al. (1984), the logistic principal
component estimator by Aguilera et al. (2006), the logistic Liu estimator
by Ménsson et al. (2012a), and the logistic Liu-type estimator by Inan
and Erdogan (2013) were proposed, and in the Poisson regression model,
the Poisson ridge estimator by Ménsson and Shukur (2011), the Poisson
Liu estimator by Mansson et al. (2012b), the Poisson Jackknifed Liu-type
estimator by Alkhateeb and Algamal (2020), and the Poisson modified
Kibria-Lukman estimator by Aladeitan et al. (2021) were proposed.
Moreover, many biased estimators were developed for the Gamma
regression model which is a member of the family of generalized linear
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models, such as the Gamma Liu estimator by Kurtoglu and Ozkale
(2016), the Gamma Liu-type estimator by Algamal and Asar (2020), the
Gamma ridge estimator (GRE) by Amin et al. (2020), the Gamma
modified ridge-type estimator by Lukman et al. (2020), and the Gamma
Kibria-Lukman estimator (GKLE) by Lukman et al. (2021).

The basis of the biased estimators is based on the shrinkage
parameters that aim to reduce the inflated variance of the estimator. So, to
achieve this purpose, several studies have been interested in providing
various formulas for the shrinkage parameters used in biased estimators,
such as the proposed formulas of the ridge shrinkage parameter by Khalaf
and Shukur (2005) in the linear regression model, Kibria et al. (2012) in
the logistic regression model, Kibria et al. (2015) in the Poisson
regression model, and Amin et al. (2020) in the Gamma regression
model, and the formulas of the Liu shrinkage parameter by Mansson et
al. (2012a) in the logistic regression model and Qasim et al. (2018) in the
Gamma regression model. About more details, one can see Hoerl and
Kennard (1970), Liu (1993), Kibria (2003), Muniz and Kibria (2009),
Khalaf and Iguernane (2014), and Algamal (2018).

Due to the importance of the shrinkage parameters in improving the
results of estimation for the biased estimators, the objective of this paper
is to propose the Gamma modified Kibria-Lukman estimator (GMKLE)
according to some selected formulas of the shrinkage parameter to
overcome the multicollinearity problem in the Gamma regression model.

This paper plans as follows: The Gamma regression model
specification and estimation by the MLE, GRE, and GKLE are given in
Section 2. The proposed estimator, GMKLE, its properties, and the
conditions of its superiority against the existing estimators, MLE, GRE,
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and GKLE based on the matrix of mean squared error (MMSE) criterion
are introduced in Section 3. Selection of the shrinkage parameter is
explained in Section 4. The performance of the proposed estimator,
GMKLE according to some selected formulas of the shrinkage parameter
is evaluated by a Monte Carlo simulation experiment and compared to the
performance of the estimators MLE, GRE, and GKLE based on the
scalar mean squared error (MSE) criterion in Section 5. Also, an
application of a real data set is analyzed in Section 6. Finally, the
conclusions are presented in Section 7.

2. Gamma Regression Model: Specification and Estimation

Suppose that VY, i =1,2,..,n is the positively skewed response
variable that follows a Gamma distribution with the nonnegative shape
parameter A and scale parameter 6. Hence, the probability density

function (pdf) of the response variable is given by

1 - _Yi
o) =tz yiteT®, y;>0 (1)

with E(Y;)) =16 = y;, and Var(¥;)) =162 = ”7‘2 , where u; = exp (x{ B), X; =
(1, x41, Xz, ., Xig)' is the ith row of the n X (q + 1) data matrix X
with g explanatory variables, and B = (8o, By, ... B4)" 1s a (¢ + 1) X 1 vector
of unknown coefficients.

By Hardin and Hilbe (2018), Equation (1) can be written also in the
following form by re-parameterized A and 0 as A=¢™1, and 6 = g p,
where ¢ > 0 is the dispersion parameter.

Then,
vi

1 —1_1 vl
f) = oD (wmP T yi(p e ¢u, ¥ >0 ()

with E(Y;) = p;, and Var(Y,) = ¢ 4.
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Since the pdf of the exponential family of distribution can be written as

fop) = exp P22 4 c(y, 0)], (3)

where ¥; is the link function, b(49;) is the cumulant function, a(¢) is the
function of dispersion parameter, and c(y;, ¢) is the normalization term.

Then, from Equation (2), the log-likelihood function is given as follows:

00D = Tl | + KB+ 070 + DinG) — 97 Hin(@) — tn MG~ (4)

exp (x; )
Consider the maximum likelihood estimation method for estimating

the parameters. By maximizing Equation (4) with respect to £, it is
required to solve the following score vector

S(B) = % = @ 13" [y —exp(x; B)] x; = 0. (5)

Since Equation (5) is nonlinear in f8, then, the algorithm of iterative
weighted least squares (IWLS) or Fisher scoring method can be used.
So, the parameters in the rth iteration are given as follows:

B = B + [1(BT)]* S(BT), (0)
a%e(y)
ap op’
evaluated, and S (,8 (r)) at B™. When convergence, the MLE is given as

follows:

where I(B) = —EJ ] is the Fisher information matrix which is

Bure = FIX'W 9, (7)

where F = X'WX, W = diag(4?), and 9; = f; + y‘ﬁ;f‘ is the ith element of

L

the vector V.

(PRINT) :ISSN 1110-4716 111 (ONLINE): ISSN 2682-4825



The Scientific Journal Of Commerce and Finance

Number 2 June2022

The MLE is asymptotically distributed for normal distribution with

mean vector E (ﬁMLE) = 3, and covariance matrix

A~ 2 .
COU(.BMLE) = [—E[_Z;g)g,)]]
= X'WxX)™
=@ F_l'

where the dispersion parameter ¢ is estimated by

9= (n-q) " ELCEEH%

Then, the MMSE of By is given by
MMSE(Buie) = Cov(Bure) + B(AmLe)B’ (BuLe)
=¢ F_l’

where B(.) is the bias vector.
The MSE of By is as follows:

MSE(BuLe) = tr[MMSE(BuLe)]
= ¢ tr(F™h)
a 1
where y; represents the jth eigenvalue of F.

2.1. The Gamma ridge estimator

(®)

©)

(10)

(1)

Amin et al. (2020) proposed the ridge estimator for the Gamma

regression model as an alternative estimator to the MLE which suffers
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from inflated variance of the estimated coefficients because of
multicollinearity.
The GRE can be defined as follows:
Bore = X'WX + kD)™* X'WX Byrg (12)
=(F+ kD™ F Buwr
= Ay BMLE:
where Ay, = (F + k1)™' F,and k > 0 is the ridge shrinkage parameter.
The GRE has the mean vector, bias vector, and covariance matrix as
follows:
E(Bere) = E[Ak Bure] (13)
= Ak B,
B(Bare) = E[Bore] — B (14)
= (A —DP
= —k(F+ kD'
= &1, (say)
and
COV(.BGRE) = Cov(Ay Puir) (15)
=@ A F71AL
= (F+kD*F (F+kD™.
Also, the MMSE and MSE of fcgg are given by
MMSE(Bere) = Cov(Bcre) + B(Bore)B' (Bore) (16)
=@ Ay F7H AL + 6]
=@ F+kD'F (F+kD ' +k2(F+kD BB ((F+kDLY,

and
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MSE(Bgre) = tr[MMSE(Bore)] (17)
= @ tr(Ay FT1AY) + £,

2
_ q Yj 2 v4 aj
- (p2j=1 (]/j+k)2 + j=1 (]/j+k)2 ’

where «; is the jth element of n' BMLE and 1 is an orthogonal matrix
whose columns are the eigenvectors of F such that n Y n' = F, where
Y =diag(ys, v2 - V)
2.2. The Gamma Kibria-Lukman estimator
For overcoming the effect of the high correlation between the
explanatory variables, Kibria and Lukman (2020) proposed a new
estimator called the KL estimator for the linear regression model and then
was developed for the Gamma regression model by Lukman et al. (2021)
and denoted as GKLE which is defined as follows:
Boxie = XWX+ kD™P (XWX — k1) Pyre (18)
=(F+ kD TF -k Pue
= Dy ﬁMLE:
where D, = (F+ kD™*(F—-kI),k > 0.

The mean and bias vectors of Bex g are given by

E(Bckee) = E[Di Bue] (19)
= Dy B,
and
B(Bakie) = E[Bokee] — B (20)
=D = DB
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= 2k(F+ kD7

= 2, (say)
The covariance matrix of Bgk g i
Cov(BoxLe) = Cov(Dy PuLe) (21)
=@ D, F7'D;.

Thus, the MMSE and MSE of Bgxig are as follows:

MMSE(Bgkie) = Cov(Bokie) + B(Bokie)B' (BekLe) (22)
=@Dy FID, +4k*>(F+ kD™ BB ((F+ kD™
=@ Dy F7'Dy + &,¢5,

and
MSE(Bekie) = tr[MMSE(Bokie)] (23)
= @ tr(Dy F7'Dy) +§,4;
_va _mk)? 2 v aj
=02ja Ve T KL ¥j+k)?

3. The Gamma Modified Kibria-Lukman Estimator

In this section, following Aladeitan et al. (2021), the modified
Kibria-Lukman estimator is proposed for the Gamma regression model
by replacing ,L?MLE in (18) with the ,E’GRE. The resulting estimator is

denoted as GMKLE and defined as follows:

Bomkie = XWX + kD)™ (X'WX — k1) Bore (24)
=(F+ kD P(F-kDF+ kD)™ F Byig
= Dy Ay BMLE .
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3.1. Properties of the GMKLE
The GMKLE of f8 has the following properties:
E(BomkLe) = E[Dy Ag Bu] (25)
= Dy Ay B,
B(Bamkie) = E[Bouie] — B (26)

= (D Ax —DPB
=(F+ kD 2k(-3F—kDp

= §3, (say)
COU(BGMKLE) = Cov(Dy Ay BMLE) (27)
= ¢ Dy Ay F~1 AyDy,

MMSE(ﬁGMKLE) = Cov(ﬁGMKLE) + B(IBAGMKLE)B,(ﬁAGMKLE) (28)
= @Dy A, FTYAD} + k% (F+kID)2(9F F' + k2DBB'((F + k )2’

= @ Dy Ay F~' A Dy + &383,

and
MSE(IéGMKLE) = tT[MMSE(ﬁGMKLE)] (29)
= @ tr(Dy Ay F1 A}.D}) + &3&}

_ove VWP o GritR?a)
_§02j=1 (vj+k)* tk J=1 (yj+k)*

3.2. Superiority of the GMKLE
For comparison between the performance of the proposed estimator,
GMKLE and the other existing estimators, MLE, GRE, and GKLE

according to the MMSE criterion, the following lemmas are used:
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Lemma 1. Assume that R and S be two positive definite matrices, that is
R>0,and S > 0. Then, R > S if and only if the maximum eigenvalue of
SR™! < 1. [Rao et al. (2008)]
Lemma 2. Let B, and B, are any two estimators of B, and U =
Cov(By) — Cov(B,) > 0.  Then, MMSE(B,) — MMSE(B,) =U +
b,b; — byby > 0 if and only if by[U + byb;] b, < 1, where b, and b,
are the bias vectors of By and B, respectively. [Trenkler and Toutenburg
(1990)]
3.2.1. Comparison of GMKLE with MLE

Based on (8) and (27),

Cov(Bue) — Cov(Bamkie) = ¢ F* — @Dy Ay F~* ADj, (30)

=@ [F'-D,A, F1A,.D;].
Since F~! — D, Ay, F~! A}, Dy, is positive definite. Then, by Lemma 2,
MMSE(Bmie) — MMSE(Bomkie) = @ [ F1 — Dy Ay FTL AjD; 1 — &&5 >0,

if and only if & [¢ (F™* — D, Ay F~* A;,D;)] ! & < 1. Thus, Theorem
1 can be stated as follows:

Theorem 1. The estimator, GMKLE is superior to the MLE according to
MMSE if and only if
B' (DA — D' [ (F™' = Dy Ay F7H ARDi)1™ (DA — DB < 1.
3.2.2. Comparison of GMKLE with GRE
Based on (16) and (28),

MMSE (Bere) — MMSE (Bomkie) = @ Ak F' A + &84 — [@ Dy Ay F7* Aj Dy, + £385]
= @ [Ax F7'A} = D Ax F7H ARDi] + 8181 — §385
=@ [Ry — S1]+§181 — $383, €2)
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where R, = Ay F~'Aj}, and S; = Dy Ay F~! A}, D, are positive definite. From
Lemma 1, R, — S; > 0 if and only if y,,,5,(S1R1Y) < 1, where ¥4, (S1R1Y) is
the maximum eigenvalue of S;R; ™.

Then, by Lemma 2, MMSE(,@GRE) — MMSE(ﬁGMKLE) > 0 if and only if

Glo (R —S)+&&] < 1.
Therefore, Theorem 2 can be stated as follows:
Theorem 2. When V0, (S1R1Y) < 1, the GMKLE is superior to the GRE

according to MMSE if and only if
B' (D Ax =)' [ (Ax F71Aj — Dy Ax F71 ADp) + (A — DBB' (A = D'17'(Dr A — DB < 1.
3.2.3. Comparison of GMKLE with GKLE

Based on (22) and (28),

MMSE(Bexie) — MMSE(BomkeE)

= @ Dy F7'Dp 4§38 — [@ Dy Ax F~1 AiDy + §3835]

= ¢ [Dy F7'Dj — D Ay F~H ARDi] + §285 — §38%

= @ [R; — S1] + §,85 — &5&3, (32)
where R, = D, F~1Dy, is positive definite. From Lemma 1, R, — S; > 0
if and only if ¥,,4,(S1Rz 1) < 1, where ¥ (S1R5?1) is the maximum
eigenvalue of S;R; .
Then, by Lemma 2, MMSE(,[;’GKLE) - MMSE(,@GMKLE) > 0 if and only if

GElop R, =S +&4G1H G <L

Thus, Theorem 3 can be established as follows:
Theorem 3. When V., (S1R;Y) < 1, the GMKLE is superior to the
GKLE according to MMSE if and only if
B'(Dy Ak -1)' [¢ (Dy F71Dy — Dy Ay F~ ADy) + (D, — DB’ (Dy —
D' (D A, — DB < 1.
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4. Selection of the Shrinkage Parameter

A disciplined way of choosing the shrinkage parameter, k is required that
minimizes the MSE. Many methods have been proposed for choosing the
shrinkage parameter, k in various models since no specific method is available.
Some popular methods for choosing k are considered as follows:

The classical estimator of k was proposed by Hoerl and Kennard (1970) as

ky = ——, (33)

Amax

where @74, is the maximum value of /.

Also, Hoerl et al. (1975) proposed the following estimator
kz:i@ (34)

I °

Q)
)

In Khalaf and Iguernane (2014), two estimators were suggested as

follows:
1

ks =3 [z —+75) (35)
N q
k4 =qQ W. (36)

5. Simulation Study

In the presence of multicollinearity in Gamma regression, the
estimated MSE of the proposed estimator, GMKLE using k; — k, is
computed as an evaluation measure to inspect their performance and
compare the results with those of GRE, GKLE, and MLE.

Therefore, the response variable is generated from the Gamma
distribution as Y;~G(u;, ¢) where u; = exp (X; B) is the mean of the

response variable with seven explanatory variables and the values of the
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parameter vector, § are chosen so that §, = 0, Z?zlﬁj =1, 0,=0=

-+« = B4, and the dispersion parameter, ¢ is selected as 0.25,0.50, and

0.75 values.
Following McDonald and Galarneau (1975) and Kibria (2003), the

explanatory variables are generated as follows:
xij = (1 - pZ) ZU + le-q B i = 1,2, ...,Tl,j = 1, 2, . q, (37)

where p? is the degree of correlation between any two explanatory
variables, and Z;; are independent standard normal distribution pseudo
random variables. For g = 7, the sample size n = 20,50, and 100 and
three levels of correlations corresponding to 0.90,0.95, and 0.99 are
considered. For combinations of given values of n,¢ and p, the Monte
Carlo experiment is repeated 1000 times by the R 4.0.3 software and the

estimated MSE is computed as

MSE(B) = =1, — B)' (b — B), (38)
where £, is the rth estimated value of .

Then, the estimated MSE values of MLE, GRE, GKLE, and GMKLE
using k, — k, estimators and different combinations of given values of

n, ¢, and p are concluded in Tables 1-3.
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Table 1. Estimated MSE of the estimators, MLE, GRE, GKLE, and

GMKLE when ¢ = 0.25

MLE

GKLE

ky

ka

ks

k

ky

ka

ks

ks

20

50

100

0.90

0.95

0.99

0.90

0.95

0.99

0.90

0.95

0.99

6.3435 5.4452

9.0366 6.9804

31.9785 19.8427

4.5588 4.3786

5.1936 4.7598

10.5762 7.7429

4.2736 4.1968

4.5805 4.3928

7.1865 5.8463

4.7699

5.5335

11.6748

4.2310

4.4246

5.7959

4.1350

4.2447

49170

5.0092

6.0219

14.2906

4.2896

4.5461

6.4252

4.1616

4.3024

5.2257

5.1136

6.2510

15.6190

4.3102

4.5976

6.7440

4.1690

4.3233

5.3751

4.8737

5.7906

13.4391

4.2443

4.4764

6.2214

4.1333

4.2562

5.0881

4.2961

4.7890

9.0868

4.0654

4.1648

5.1157

4.0425

4.0860

4.4806

4.4238

4.9385

9.2900

4.1255

4.2431

5.1990

4.0786

4.1396

4.5548

4.5080

5.1387

9.8931

4.1410

4.2889

5.3573

4.0893

4.1632

4.6443

4.6482

53314

10.8966

4.1814

4.3627

5.6283

4.0971

4.1950

4.8034

4.1861

4.4776

6.7176

4.0416

4.1124

4.5795

4.0255

4.0648

4.2723

4.3134

4.6790

7.5301

4.0919

4.1874

4.7975

4.0546

4.1091

4.3902

4.3836

4.8104

8.1743

41114

4.2256

49626

4.0632

4.1275

4.4729

Table 2. Estimated MSE of the estimators, MLE, GRE, GKLE, and

GMKLE when ¢ = 0.50

MLE

GKLE

ky

kz

ks

ks

ky

kz

ks

ky

ks

20

50

100

0.90

0.95

0.99

0.90

0.95

0.99

0.90

0.95

0.99

9.1113 7.1859

14.8531 10.5732

63.6359 39.2135

52472 4.8078

6.6556 5.6276

18.6020 12.3528

4.5415 4.3714

5.1752 4.7592

10.5664 7.7961

5.7544

7.5384

22.1788

4.4540

4.8545

7.9689

4.2199

4.4156

5.7993

6.2637

8.5879

27.8585

4.5860

5.1239

9.3830

4.2804

4.5405

6.4461

6.4836

9.0615

30.5992

4.6397

5.2471

10.1066

4.3020

4.5945

6.7780

5.9963

8.1150

26.1256

4.5055

4.9946

8.9617

4.2405

4.4777

6.2533

4.7827

5.8536

15.1072

4.1379

4.3582

6.3853

4.0487

4.1399

5.0094

5.0581

6.2756

16.5833

4.2406

4.4861

6.5718

4.1140

4.2261

5.1246

5.2370

6.6108

18.2224

4.2952

4.5838

6.9658

4.1410

4.2775

5.3107

5.5132

7.1082

20.5299

4.3775

4.7467

7.6142

4.1751

4.3598

5.6420

4.5192

5.1700

10.4539

4.0896

4.2272

5.2582

4.0252

4.0935

4.5327

4.8000

5.6762

12.8332

4.1710

4.3627

5.7200

4.0792

41721

4.7562

4.9528

5.9774

14.4235

4.2238

4.4453

6.0971

4.1006

4.2137

4.9338
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Table 3. Estimated MSE of the estimators, MLE, GRE,

GMKLE when ¢ = 0.75

GKLE, and

MLE GRE

GKLE

ky ka ks

ks

ky ka

ks

ks

20

50

100

0.90

0.95

0.99

0.90

0.95

0.99

0.90

0.95

0.99

11.5915 8.7462 6.5696 7.3501

20.4830 14.2380 9.5733 11.2112

96.1377 60.7521 34.4510 43.4260

59280 5.2384 4.6785 4.8838

8.1153 6.5460 5.3234 5.7477

26.7057 17.4530 10.5008 12.7716

48046 4.5411 4.3075 4.3983

57319 5.1023 4.5878 4.7726

13.5951 9.5689 6.6767 7.6264

7.6874

11.9473

47.7106

4.9706

5.9444

13.9355

4.4333

4.8550

8.1059

6.9930 5.0721

10.5870 6.7968

411218 21.6187

4.7734 4.2146

5.5773 4.5623

12.2877 7.6680

4.3472  4.0692

4.6922 4.2069

7.3562 5.4869

5.5315

7.6068

25.1452

4.3619

4.7653

8.1969

4.1580

4.3250

5.6987

5.8218

8.1892

28.2101

4.4463

49227

8.9187

4.1992

44012

5.9901

6.2466

9.0183

32.4631

4.5763

5.1803

10.1012

4.2555

4.5210

6.4503

4.6634

5.7899

15.0911

4.1371

4.3548

6.0461

4.0366

4.1309

4.7750

5.1230

6.6819

19.5864

4.2689

4.5668

6.8967

41117

4.2427

5.1335

5.3708

7.1960

22.4266

4.3371

4.6993

7.5629

4.1448

4.3058

5.4092

It can be observed from Tables 1-3, the estimated values of MSE of
all estimators MLE, GRE, GKLE, and GMKLE increase as p increases,
whereas the estimated MSE of all estimators decreases as the sample size
increases. In addition, when the dispersion parameter, ¢ increases, there
is increasing in the MSE for all estimators in all cases. Furthermore, the
MLE has the worst performance among other estimators the higher the
degree of correlation since it has the largest estimated MSE in all cases,
and the proposed estimators of GMKLE using k; — k, outperform other
estimators in terms of MSE. Moreover, with respect to the estimators of
the shrinkage parameter, it can be seen that the k, performs well with the
lowest MSE of GMKLE. Although the GRE and GKLE attained good
results compared to the MLE in terms of MSE, the GMKLE is superior to
them in all cases.
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6. Application

To evaluate the performance of the proposed estimator, GMKLE
against the estimators MLE, GRE, and GKLE, a real data set of the
number of persons employed in Pakistan is used. This data was taken
from Pasha and Shah (2004) and comprises of 28 observations, where the
response variable (y) is the number of persons employed (million) with
five explanatory variables. These explanatory variables include the land
cultivated (million hectares) (x;), the inflation rate (%) (x;), the number
of establishments (x3), population (million) (x4), and the literacy rate
(%) (x5). For fitting the response variable to the Gamma distribution, the
Chi-square test is considered. The result of Chi-square test confirms the
suitability of the Gamma distribution to this data with a test statistic
equals to 1.080387 and the p — value is 0.955825. The dispersion
parameter is estimated according to (9) equals to 0.000573. Further, the
condition number (CN) of the data is used to check the existence of

CN = Y, Vmax/ymin ’ (39)

where Y4, and Ypin are the maximum and minimum eigenvalues of the

multicollinearity as

F matrix respectively. The value of CN is to be 41291.68 indicating the
presence of severe multicollinearity among the explanatory variables. The
correlation matrix among the five explanatory variables is as follows:

[1 066 094 098 0.96]

066 1 0.66 0.73 0.68]
lo94 066 1 096 0.87]

098 073 096 1 0.95!
loos 068 087 095 1

It is clear that there are high correlations between x; and x5, x; and x,,
x; and x¢, x5 and x4, x5 and x5, and x, and xc.
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As an evaluation measure, the MSE of the MLE, GRE, GKLE, and
GMKLE is computed according to (11), (17), (23), and (29) respectively.

In Table 4, the estimated coefficients, and MSE values of the estimators
MLE, GRE, GKLE, and GMKLE are listed.

From Table 4, it is obvious seen that the proposed estimator,
GMKLE shrinkages well the value of the estimated coefficients. Also, for
the GRE, GKLE, and GMKLE, all considered estimators of k are
superior to the MLE in terms of MSE and the k, has the lowest MSE.
Additionally, the GMKLE using k, performs better than the other
estimators in terms of MSE.

Table 4. The estimated coefficients and MSE of the estimators

Estimator Bo [?1 ﬁAz [?3 [L [?5 MSE

MLE 2.082394 0.016472 —0.057044 0.000013 0.009619 —0.002751 1.803159 x 10~°

GRE k;  1.885615 0.027859 —0.055038 0.000010 0.009430 —0.003109 1.801214 x 107°
k, 1.418805 0.054871 —0.050257 0.000005 0.008980 —0.003958 1.794489 x 107°
k; 1.619086 0.043282 —0.052313 0.000007 0.009173 —0.003594 1.797840 x 107
ks, 1.705510 0.038281 —0.053197 0.000008 0.009257 —0.003437 1.799047 x 107

GKLE k;  1.688837 0.039246 —0.053031 0.000008 0.009241 —0.003467 1.799274 x 10~°
k, 0.755216 0.093270 —0.043470 —0.000003 0.008341 —0.005165 1.785750 x 107
k; 1.155778 0.070092 —0.047582 0.000002 0.008728 —0.004437 1.792563 x 107°
k, 1.328626 0.060090 —0.049351 0.000004 0.008894 —0.004123 1.794960 x 107

GMKLE k; 1.529383 0.048473 —0.051402 0.000006 0.009087 —0.003757 1.797342 x 10~°
k, 0.516092 0.107106 —0.040968 —0.000006 0.008110 —0.005599 1.777527 x 107°
k; 0.899381 0.084928 —0.044940 —0.000001 0.008480 —0.004903 1.787343 x 107
k, 1.088659 0.073976 —0.046887 0.000001 0.008663 —0.004559 1.790908 x 10
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7. Conclusions

In this paper, the GMKLE was proposed in the Gamma regression
model to tackle the effect of multicollinearity using some estimators of
the shrinkage parameter. The Monte Carlo simulation experiment and
application were conducted to evaluate the performance of the proposed
estimator, GMKLE with considered estimators of shrinkage parameter
against the estimators MLE, GRE, and GKLE based on the MSE
criterion. The results of simulation and application showed that the
proposed estimator, GMKLE outperformed the other estimators in terms
of MSE. In addition, for the GRE, GKLE, and GMKLE, all selected
estimators of the shrinkage parameter performed better than the MLE in
terms of MSE and the GMKLE with k, had the lowest MSE. Hence, the
GMKLE is a good choice to apply in the Gamma regression model when
the problem of multicollinearity is present.
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