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Abstact 

In this paper, a new three-parameter distribution called the Kumaraswamy Shanker (Kw-

Sh) distribution is proposed and studied. The reliability (survival) function, hazard rate 

function, reversed hazard rate function r and the cumulative hazard rate function of the new 

distribution is obtained. Some mathematical properties of this distribution such as 

moments, moments generating function, incomplete moments, quantile function, entropies 

(Renyi and Shannon) and mean deviation are derived. The method of maximum likelihood 

and Bayesian estimation method are used to estimate the distribution parameters. Finally, 

two real datasets, related to Covid-19, were used to examine the performance of the 

proposed distribution compared to Shanker and exponential distributions based on Akaike 

information criterion (AIC). The results showed that the new distribution is more proper in 

fitting data than other distributions. Also, the estimation of parameters using the Bayesian 

method is better than the maximum likelihood method 

Keywords: Kumaraswamy distribution, Shanker distribution, moments generating 

function, quantile function, maximum likelihood estimation, Bayesian estimation. 

Introduction: 

The Shanker distribution is introduced by Shanker (2015) as a one – parameter lifetime 

distribution, 𝜃 > 0. Its probability density function (pdf) is given by 

𝑔(𝑥) =
𝜃2

𝜃2+1
(𝜃 + 𝑥)𝑒−𝜃𝑥  ; 𝑥 > 0, 𝜃 > 0   (1) 

The pdf in eq. (1) is a two-component mixture of an exponential distribution with scale 

parameter 𝜃and a gamma distribution with shape parameter 2 and the same scale parameter 

of exponential distribution 

𝜃as follows 

𝑔(𝑥) = 𝑃𝑔1(𝑥) + (1 − 𝑃)𝑔2(𝑥)    (2) 

Where 𝑃 =
𝜃2

𝜃2+1
 is mixing proportion,𝑔1(𝑥) = 𝜃𝑒−𝜃𝑥 is the pdf of exponential distribution 

and𝑔2(𝑥) = 𝜃2𝑥𝑒−𝜃𝑥 is the pdf of gamma distribution. 

The cumulative distribution function (cdf) of Shanker distribution is given by 

𝐺(𝑥) = 1 −
(𝜃2+1)+𝜃𝑥

𝜃2+1
𝑒−𝜃𝑥  ; 𝑥 > 0, 𝜃 > 0    (3) 

In the last few years, new generated families of continuous distributions have attracted 

many authors to develop new models.  These families are obtained by entering one or more 

added shape parameter (s) to the baseline distribution. 
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The Kumaraswamy-G family (KW-G) is considered one of these families, which 

introduced by Kumaraswamy (1980) and Cordeiro and de Castro (2010). Nadarajah et al 

(2011)studied some statistical properties of this family.  The Kumaraswamy distribution is 

not very common among statisticians and has been little exported in the literature.  If G(x) 

is the baseline CDF of arandom variable X, Cordeiro and deCastro (2010) defined the CDF 

of the Kw-G distribution as 

𝐹(𝑥) = 1 − [1 − (𝐺(𝑥))
𝑎

]
𝑏
 (4) 

Where  𝑎 > 0 and 𝑏 > 0 are shape parameters which govern skewness and tail weights.  

The pdf corresponding eq. (4) takes the following form 

𝑓(𝑥) = 𝑎𝑏 𝑔(𝑥)(𝐺(𝑥))𝑎−1[1 − (𝐺(𝑥))𝑎]𝑏−1                (5) 

Note that, the pdf in eq. (5) can be unimodal, increasing, decreasing or constant, depending 

on the parameter values. Nadarajah et al (2011),Several generalized distribution from eq.(5) 

have been defined and investigated in the literature including, for example, a new 

generalized Kumaraswamy distribution (Carrasco et al (2010)),the KW- Weibull 

distribution (Corderio et al. (2010)), the KW-pareto distribution (Bourguignon et al 

(2012)),the KW-double inverse exponential distribution (Aleem et al. (2013)),the KW-

quasi Lindly distribution (Elbatal and Elgarhy (2013)),the Kw-generalized Rayleigh 

istribution (Gomes et al (2014)), the Kw-modified Weibull distribution (Cordeiro et al 

(2014)), a note on Kumaraswamy exponentiated distribution (Rashwan (2016)), The Kw-

exponential Weibull distribution (Cordeiro et al (2016)),the Kw-Sushila distribution 

(Shawki and Elgarhy (2017)) and the Kw-exponentiated Fréchet distribution (Mansouir et 

al (2018)). 

This paper offers new distribution called Kumaraswamy Shanker (KW-Sh) distribution.  

This study is organized as follows: In section 2, we propose and define the KW-Sh 

distribution and provide expansion for its density function.  Some statistical properties of 

this distribution are discussed in section 3.  In section 4, Maximum likelihood method and 

Bayesian method are used to estimate unknown parameters. Section 5 provides application 

to COVID-19 data sets. Finally, some conclusions are addressed in section 6. 

2. Kumaraswamy Shanker distribution 

 In this section, we introduce the three-parameter Kumaraswamy Shanker (Kw-Sh) 

distribution.  Using eq. (3) in eq. (4), The cdf of the Kw-Sh distribution is given by 

𝐹(𝑥) = 1 − [1 − (1 −
(𝜃2+1)+𝜃𝑥

𝜃2+1
𝑒−𝜃𝑥)

𝑎

]
𝑏

  , 𝑥 > 0 , 𝜃, 𝑎, 𝑏 > 0          (6) 

 By differentiating eq. (6), we have 
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𝑓(𝑥) =
𝑎𝑏𝜃2

𝜃2+1
(𝜃 + 𝑥)𝑒−𝜃𝑥 [1 −

(𝜃2+1)+𝜃𝑥

𝜃2+1
𝑒−𝜃𝑥]

𝑎−1

{1 − [1 −

(𝜃2+1)+𝜃𝑥

𝜃2+1
𝑒−𝜃𝑥]

𝑎

}
𝑏−1

; 𝑥, 𝜃, 𝑎, 𝑏 > 0             (7) 

Where 𝜃 is scale parameter and a and b are shape parameters  

The reliability (survival) function R (x), hazard rate function h(x), reversed hazard rate 

function r(x) and the cumulative hazard rate function H(x) of the Kw-Sh distribution are 

given by 

𝑅(𝑥) = 1 − 𝐹(𝑥) = [1 − (1 −
(𝜃2 + 1) + 𝜃𝑥

(𝜃2 + 1)
𝑒−𝜃𝑥)

𝑎

]

𝑏

 

, 

ℎ(𝑥) =
𝑓(𝑥)

𝑅(𝑥)
=

𝑎𝑏𝜃2(𝜃 + 𝑥)𝑒−𝜃𝑥 [1 −
(𝜃2+1)+𝜃𝑥

(𝜃2+1)
𝑒−𝜃𝑥]

𝑎−1

(𝜃2 + 1) [1 − (1 −
(𝜃2+1)+𝜃𝑥

(𝜃2+1)
𝑒−𝜃𝑥)

𝑎

]
 

, 

𝑟(𝑥) =
𝑓(𝑥)

𝐹(𝑥)
=

abθ2(θ + x)e−θx [1 −
(θ2+1)+θx

(θ2+1)
e−θx]

a−1

[1 − (1 −
(θ2+1)+θx

(θ2+1)
e−θx)

a

]
b−1

(θ2 + 1) {1 − [1 − (1 −
(θ2+1)+θx

(θ2+1)
e−θx)

a

]
b

}

 

, and 

𝐻(𝑥) = − ln 𝑅(𝑥) = −𝑙𝑛 [1 − [1 −
(𝜃2 + 1) + 𝜃𝑥

(𝜃2 + 1)
𝑒−𝜃𝑥]

𝑎

]

𝑏

 

Respectively. We notice that the following distributions are special cases of the Kw-Sh 

distribution 

- If b=1, then eq. (7) gives exponentiated Shanker distribution with parameters a and 𝜃. 

- If a =b = 1, then eq. (7) give the Shanker distribution with 𝜃 parameter. 

 

2.1 Expansion of theprobability density function  

Here, we present a simple expansion for the pdf of Kw-Shanker distribution by using the 

generalized binomial theorem if 𝛽 is positive and  |𝑧| < 1 , then 

(1 − 𝑧)𝛽−1 = ∑(−1)𝑖 (
𝛽 − 1

𝑖
) 𝑧𝑖

∞

𝑖=0

, 

  𝛽 > 0 , |𝑧| < 1             (8) 

The eq. (7) becomes  

𝑓(𝑥) =
𝑎𝑏𝜃2

𝜃2 + 1
(𝜃 + 𝑥)𝑒−𝜃𝑥 ∑(−1)𝑖 (

𝑏 − 1
𝑖

)

∞

𝑖=0

[1 −
(𝜃2 + 1) + 𝜃𝑥

𝜃2 + 1
𝑒−𝜃𝑥]

𝑎(𝑖+1)−1

 



  

98 
 

=
𝑎𝑏𝜃2

𝜃2 + 1
(𝜃 + 𝑥) ∑ (−1)𝑖+𝑗 (

𝑏 − 1
𝑖

)

∞

𝑖,𝐽=0

(
𝑎(𝑖 + 1) − 1

𝑗
) (1 +

𝜃𝑥

𝜃2 + 1
)

𝑗

𝑒−𝜃(𝑗+1)𝑥(9) 

Then by using binomial theorem 

(1 + 𝑧)𝑗 = ∑ (
𝑗
𝑘

) 𝑧𝑘

∞

𝑘=0

                      (10) 

     

Using eq. (10) the eq. (9) becomes 

𝑓(𝑥) =
𝑎𝑏𝜃2

𝜃2 + 1
(𝜃 + 𝑥) 

∑ (−1)𝑖+𝑗 (
𝑏 − 1

𝑖
)

 ∞

𝑖,𝑗,𝑘=0

(
𝑎(𝑖 + 1) − 1

𝑗
) 

(
𝑗
𝑘

) (
𝜃𝑥

𝜃2 + 1
)

𝑘

𝑒−𝜃(𝑗+1)𝑥 

= 𝑎𝑏𝜃 ∑ (
𝜃

𝜃2 + 1
)

𝑘+1

(−1)𝑖+𝑗 (
𝑏 − 1

𝑖
)

∞

𝑖,𝑗,𝑘=0

 

(
𝑎(𝑖 + 1) − 1

𝑗
) (

𝑗
𝑘

) (𝜃𝑥𝑘 + 𝑥𝑘+1)𝑒−𝜃(𝑗+1)𝑥 

Let wijk =

 abθ (
θ

θ2+1
)

k+1
(−1)i+j (

b − 1
i

) (
a(i + 1) − 1

j
) (

j
k

) 

Then the pdf of Kw-Shanker distribution can be rewritten as follows: 

                f(x) =  ∑ wijk

∞

i,j,k=0

(θxk + xk+1)e−θ(j+1)x, x > 0,   𝑎, 𝑏, 𝜃 > 0              (11) 

 

 

3. Statistical properties of Kw-Shanker distribution 

In this section, we discuss some statistical properties of the Kw-Shanker distribution, 

specifically moments, moment generating function and quantile function. 
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3.1 Moments 

Let X a random variable having the Kw-Sh distribution.  using eq. (11), the 𝑟𝑡ℎ non-central 

moment of X can obtain as  

𝐸(𝑋𝑟) = ∑ 𝑤𝑖𝑗𝑘

∞

𝑖,𝑗,𝑘=0

∫ 𝑥𝑟(𝜃𝑥𝑘 + 𝑥𝑘+1)𝑒−𝜃(𝑗+1)𝑥𝑑𝑥
∞

0

 

Let 𝑦 = 𝜃(𝑗 + 1)𝑥, 𝑦 > 0,  𝑥 =
𝑦

𝜃(𝑗+1)
 𝑎𝑛𝑑 𝑑𝑥 =

𝑑𝑦

𝜃(𝑗+1)
 

∴   𝐸(𝑋𝑟) = ∑ 𝑤𝑖𝑗𝑘

∞

𝑖,𝑗,𝑘=0

∫ [
𝜃𝑦𝑟+𝑘

𝜃𝑟+𝑘+1(𝑗 + 1)𝑟+𝑘+1
𝑒−𝑦𝑑𝑦 +

𝑦𝑟+𝑘+1

𝜃𝑟+𝑘+2(𝑗 + 1)𝑟+𝑘+2
𝑒−𝑦𝑑𝑦]

∞

0

 

𝐸(𝑋𝑟) = ∑ 𝑤𝑖𝑗𝑘

∞

𝑖,𝑗,𝑘=0

[
𝜃Γ(r + k + 1)

(𝜃(𝑗 + 1))𝑟+𝑘+1
 +

Γ(r + k + 2)

(𝜃(𝑗 + 1))𝑟+𝑘+2
]                                           (12) 

Where Γ(. ) denotes the gamma function. 

Substitution in the eq. (12) by r=1,2,3,4 we get the first four moments as follows 

𝐸(𝑋) = 𝜇1́ = ∑ 𝑤𝑖𝑗𝑘

∞

𝑖,𝑗,𝑘=0

[
𝜃Γ(k + 2)

(𝜃(𝑗 + 1))𝑘+2
+

Γ(k + 3)

(𝜃(𝑗 + 1))𝑘+3
] 

𝐸(𝑋2) = 𝜇2́ = ∑ 𝑤𝑖𝑗𝑘

∞

𝑖,𝑗,𝑘=0

[
𝜃Γ(k + 3)

(𝜃(𝑗 + 1))𝑘+3
+

Γ(k + 4)

(𝜃(𝑗 + 1))𝑘+4
] 

𝐸(𝑋3) = 𝜇3́ = ∑ 𝑤𝑖𝑗𝑘

∞

𝑖,𝑗,𝑘=0

[
𝜃Γ(k + 4)

(𝜃(𝑗 + 1))𝑘+4
+

Γ(k + 5)

(𝜃(𝑗 + 1))𝑘+5
] 

𝐸(𝑋4) = 𝜇4́ = ∑ 𝑤𝑖𝑗𝑘

∞

𝑖,𝑗,𝑘=0

[
𝜃Γ(k + 5)

(𝜃(𝑗 + 1))𝑘+5
+

Γ(k + 6)

(𝜃(𝑗 + 1))𝑘+6
] 

Based on the first four moments of the Kw-Sh distribution, the measures of mean (𝜇), 

variance (𝜎2), skewens coefficient (SK) and kurtosis coefficient can be obtained as  

𝜇 = 𝐸(𝑥) = 𝜇1́ = ∑ 𝑤𝑖𝑗𝑘

∞

𝑖,𝑗,𝑘=0

[
𝜃Γ(k + 2)

(𝜃(𝑗 + 1))
𝑘+2 +

Γ(k + 3)

(𝜃(𝑗 + 1))
𝑘+3], 

                          𝜎2=𝜇2́ − (𝜇1́)2 ,                       𝑆𝐾 =
𝜇3́−3𝜇1́𝜇2́+2(𝜇1́)3

(𝜇2́−𝜇1́
2)

3 2⁄  

and                            𝐾𝑢 =
𝜇4́−4𝜇1́𝜇3́+6𝜇1́

2𝜇2́−3𝜇1́
4

(𝜇2́−𝜇1́
2)

2  
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3.2 Moment generating function 

Now, we can derive the moments generating function (𝑚𝑔𝑓), 𝑀𝑥(𝑡) for the Kw-Sh 

distribution as follows. 

𝑀𝑥(𝑡) = 𝐸(𝑒𝑡𝑥) = ∑ 𝑤𝑖𝑗𝑘

∞

𝑖,𝑗,𝑘=0

∫ 𝑒𝑡𝑥
∞

0

(𝜃𝑥𝑘 + 𝑥𝑘+1)𝑒−𝜃(𝑗+1)𝑥𝑑𝑥 

= ∑ 𝑤𝑖𝑗𝑘

∞

𝑖,𝑗,𝑘=0

∫ (𝜃𝑥𝑘 + 𝑥𝑘+1)
∞

0

𝑒𝑥(𝜃(𝑗+1)−𝑡)𝑑𝑥 

Based on the transformation 𝑦 = 𝑥(𝜃(𝑗 + 1) − 𝑡), we get 

𝑀𝑥(𝑡) = ∑ 𝑤𝑖𝑗𝑘

∞

𝑖,𝑗,𝑘=0

[
𝜃Γ(k + 1)

(𝜃(𝑗 + 1) − 𝑡)𝑘+1
+

Γ(k + 2)

(𝜃(𝑗 + 1) − 𝑡)𝑘+2
]                        (13) 

In the same way, the factorial moment generating function, 𝑀𝑥(ln 𝑡), of the Kw-Sh 

distribution becomes 

𝑀𝑥(ln 𝑡) = 𝐸(𝑒𝑥 ln 𝑡)

= ∑ 𝑤𝑖𝑗𝑘

∞

𝑖,𝑗,𝑘=0

[
𝜃Γ(k + 1)

(𝜃(𝑗 + 1) − ln 𝑡)𝑘+1

+
Γ(k + 2)

(𝜃(𝑗 + 1) − ln 𝑡)𝑘+2
]                (14) 

and the characteristic function of this distribution is given by 

𝜙𝑥(𝑡) = 𝐸(𝑒𝑖𝑡𝑥)) = ∑ 𝑤𝑖𝑗𝑘

∞

𝑖,𝑗,𝑘=0

[
𝜃Γ(k + 1)

(𝜃(𝑗 + 1) − 𝑖𝑡)𝑘+1
+

Γ(k + 2)

(𝜃(𝑗 + 1) − 𝑖𝑡)𝑘+2
]                (15) 

 

Where 𝑖 = √−1 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑟𝑜𝑜𝑡 

3.3 Incomplete moments  
The rth incomplete moment, say  𝑀𝑥(𝑧) of the Kw. Sh distribution is given by  

 

𝑀𝑥(𝑍) = 𝐸(𝑥𝑟\𝑋 < 𝑧) 

Using eq. (11), The 𝑀𝑥(𝑍) can be obtained as follows 

 

𝑀𝑥(𝑍) =  ∑ 𝑊𝑖𝑗𝑘 ∫ 𝑥𝑟(𝜃𝑥𝑘 + 𝑥𝑘+1)𝑒−𝜃(𝑗+1)𝑥𝑑𝑥
𝑍

0

∞

𝑖,𝑗,𝑘=𝜐

 

Let 𝑌 = 𝜃(𝑗 + 1)𝑥, 0 < 𝑌 < 𝜃 (𝑗 + 1)𝑍  ,𝑥 =
𝑌

𝜃(𝑗+1)
   and 𝑑𝑥 =

𝑑𝑦

𝜃(𝑗+1)
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So, substituting in the above equation and integrating the above equation, we get 

 

𝑀𝑥(𝑍) = ∑ 𝑊𝑖𝑗𝑘 [
𝜃⌈𝐼(𝑟 + 𝑘 + 1, 𝜃(𝑗 + 1)𝑍

[𝜃(𝑗 + 1)]𝑟+𝑘+1
+

⌈𝐼(𝑟 + 𝑘 + 2, 𝜃(𝑗 + 1)𝑍

[𝜃(𝑗 + 1)]𝑟+𝑘+2
]

∞

𝑖,𝑗,𝑘=0

  (16) 

 

Where ⌈𝐼(∅) is incomplete gamma function and ⌈𝐼(𝛼, 𝑧) = ∫ 𝑦𝛼−1𝑒−𝑦𝑑𝑦
𝑧

0
 

 

The important application of the first incomplete moment is related to the Bonferroni and 

Lorenz curves.  These curves are very useful in insurance, reliability, economics and 

medicine (Tahir et al., 2015). 

3.4 Quantile function 

The quantile function, 𝑠𝑎𝑦 𝑄(𝑢) = 𝐹−1(𝑈) = 𝑥, of the kw-Sh distribution can be obtained 

by inverting eq. (6), we have the quantile function 𝑄(𝑢)as follows 

(1 +
𝜃𝑋𝑞

𝜃2+1
) 𝑒−𝜃𝑋𝑞 = 1 − [1 − (1 − 𝑈)

1

𝑏]

1

𝑎
 (17) 

We can easily generate X variable by Taking U as a uniform random variable in (0,1). 

Using Q (𝑢), we can derive the first quartile (𝑄1), The median (𝑄2) and the third quartile 

(𝑄3) of the Kw-sh distribution by replacing 𝑢 with the value 0.25. 0.50 and 0.75 in eq. (17). 

 

3.5 Entropies 
The Renyi entropy of a random is a measure of variation of the uncertainty.  If  X is a 

random variable with pdf, f(x), defined in eq, (7), then the Renyi entropy of x is given by 

(Song, 2001). 

𝐼𝑋:𝑅(𝑞) =
1

1 − 𝑞
𝐼𝑛(𝐼𝑥(𝑞)) 

 

Where 𝐼𝑥(𝑞) = ∫ (𝑓(𝑥))𝑞
𝑅

𝑑𝑥  , 𝑞 > 0 𝑎𝑛𝑑 𝑞 ≠ 1 

For Kw-Sh a random variable using eq. (7) , then 

𝐼𝑥(𝑞) = (
𝑎𝑏𝜃2

𝜃2 + 1
)

𝑞

∫ (𝜃 + 𝑥)𝑞𝑒−𝜃𝑞𝑥
∞

0

[1 −
(𝜃2 + 1) + 𝜃𝑥

𝜃2 + 1
𝑒−𝜃𝑥]

𝑞(𝑎−1)

[1

− [1 −
(𝜃2 + 1) + 𝜃𝑥

𝜃2 + 1
𝑒−𝜃𝑥

𝑎

]]

𝑞(𝑏−1)

 

Applying the binomial expansion and integrating the above equation, we get 
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𝐼𝑥(𝒒) = (𝒂𝒃𝜽)𝒒 ∑ ∑ (−𝟏)𝒊+𝒋

𝒒

𝒎=𝟎

(
𝒒(𝒃 − 𝟏)

𝒊
)

∞

𝒊,𝒋,𝒌=𝝊

(
𝒂𝒊 + 𝒒(𝒂 − 𝟏)

𝒋
) 

(
𝒋
𝒌

) (
𝒒
𝒎

) (
𝜽

𝜽𝟐 + 𝟏
)

𝒌+𝒒

𝜽𝒎 ∫ 𝒙𝒌+𝒒−𝒎𝒆−𝜽(𝒋+𝒒)𝒙𝒅𝒙
∞

𝟎

 

 

Let  = 𝜃(𝑗 + 𝑞)𝑥 , y>0 ,𝑥 =
𝑦

𝜃(𝑗+𝑞)
   and 𝑑𝑥 =

𝑑𝑦

𝜃(𝑗+𝑞)
 

 
So, 𝑰𝒙(𝒒) =  

(abθ)q ∑ ∑ (−1)i+j

q

m=0

∞

i,j,k=0

(q(b − 1)
i

) (
ai + q(a − 1)

j
) (

j
k

) (
𝒒
𝒎

) 𝜽𝒎 

(
𝜽

𝜽𝟐 + 𝟏
)

𝒌+𝒒 ⌈(𝒌 + 𝒒 − 𝒎 + 𝟏)

[𝜽(𝒋 + 𝒒)]𝒌+𝒒−𝒎+𝟏
 

 

Hence, the Renyi entropy becomes 

 

𝐼𝑋:𝑅(𝑞) =
𝑞 𝑙𝑛 𝑎𝑏𝜃

1 − 𝑞
+ (1 − 𝑞)−1𝐿𝑛 ∑ ∑ (−𝟏)𝒊+𝒋

𝒒

𝒎=𝟎

∞

𝒊,𝒋,𝒌=𝟎

(
𝒒(𝒃 − 𝟏)

𝒊
) (

𝒂𝒊 + 𝒒(𝒂 − 𝟏)

𝒋
) 

(
𝒋
𝒌

) (
𝒒
𝒎

) 𝜽𝒎 (
𝜽

𝜽𝟐 + 𝟏
)

𝒌+𝒒 ⌈(𝒌 + 𝒒 − 𝒎 + 𝟏)

[𝜽(𝒋 + 𝒒)]𝒌+𝒒−𝒎+𝟏
(𝟏𝟖) 

 
The Shannon entropy (Shannon1948), say 𝐸𝑠ℎ of a random variable x with pdf in eq. (11) is defined 

by 

 

𝐸𝑠ℎ = 𝐸[−𝑙𝑛𝑓(𝑥)] 

= 𝐸 [−𝐼𝑛 ∑ 𝑊𝑖𝑗𝑘(𝜃𝑥𝑘 + 𝑥𝑘+1)𝑒−𝜃(𝑗+1)𝑥

∞

𝑖,𝑗,𝑘=0

] 

 

= − [𝐼𝑛 ∑ 𝑊𝑖𝑗𝑘 + 𝐼𝑛[𝜃𝐸(𝑥𝑘) + 𝐸(𝑥𝑘+1)] − 𝜃(𝑗 + 1)𝐸(𝑥)

∞

𝑖,𝑗,𝑘=0

] 

 

𝐸𝑠ℎ = 𝜃(𝑗 + 1)𝐸(𝑥) − 𝐼𝑛 ∑ 𝑊𝑖𝑗𝑘 − 𝐼𝑛[𝜃𝐸(𝑥𝑘) + 𝐸(𝑥𝑘+1)]

∞

𝑖,𝑗,𝑘=0

                (19) 

Where 

 

𝐸(𝑥) = ∑ 𝑊𝑖𝑗𝑘

∞

𝑖,𝑗,𝑘=0

[
𝜃⌈(𝑘 + 2)

(𝜃(𝑗 + 1))𝑘+2 +
⌈(𝑘 + 3)

(𝜃(𝑗 + 1))𝑘+3] 

 

and  

 

𝐸(𝑥𝑘) = ∑ 𝑊𝑖𝑗𝑘

∞

𝑖,𝑗,𝑘=0

[
𝜃⌈(2𝑘 + 1)

(𝜃(𝑗 + 1))
2𝑘+1 +

⌈(2𝑘 + 2)

(𝜃(𝑗 + 1))
2𝑘+2] 
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Note that, entropies have been used in many applications in engineering and other sciences. 
 

3.6 Mean deviation 
The mean deviation is a measure of the dispersion derived by computing the mean of the 

absolute value of differences between the observed values of the variable and the mean or 

the median of this variable. 

The mean deviation about the mean and the median are defined. 
 

𝐷(𝑢) = 𝐸|𝑋 − 𝜇| 

= ∫ |𝑥 − 𝜇1| 𝑓(𝑥)𝑑𝑥
∞

0

= 2𝜇1𝐹(𝜇1) − 2𝑚1(𝜇1)                           (20)̀  

and     

𝐷(𝑀) = ∫ |𝑥 − 𝑀| 𝑓(𝑥)𝑑𝑥
∞

0

= 𝜇1̀ − 2𝑚1(𝑀)                           (21) 

 

respectively, where 𝜇1 = 𝐸(𝑥) comes from equ. (12) where r=1, M is the median (x) comes 

from equ. (6) when 𝐹(𝑥) =
1

2
 , 𝐹(𝜇1) comes from the cdf in equ. (6) and 𝑚1(𝑍) =

∫ 𝑥𝑓(𝑥)𝑑𝑥
𝑍

0
 is the first incomplete moment obtained from equ. (16) with r=1. 

 

3.7 Order statistics 
Order statistics plays an important role in many applied fields of statistics such as quality 

control and reliability.  Suppose 𝑋1, 𝑋2, … . , 𝑋𝑛is a random sample of size n from the Kw-Sh 

distribution with parameters a, b and 𝜃.  Let 𝑋1:𝑛, 𝑋2:𝑛 , … . , 𝑋𝑛:𝑛be the corresponding order 

statistics. The density function of the ithorder statistic 𝑋1:𝑛say 𝑓𝑖:𝑛(𝑥)  for i=1,2,…,n is 

given by Arnold et al(2008) 

𝑓𝑖:𝑛(𝑥) =
𝑓(𝑥)

𝐵(𝑖, 𝑛 − 𝑖 + 1)
[𝐹(𝑥)]𝑖−1[1 − 𝐹(𝑥)]𝑛−𝑖 

 

=
𝑓(𝑥)

𝐵(𝑖, 𝑛 − 𝑖 + 1)
∑(−1)𝐿

𝑛−𝑖

𝐿=0

(
𝑛 − 𝑖

𝐿
) [𝐹(𝑥)]𝑖+𝐿−1 

 

Inserting equ.(6) and equ.(7) in the last equation, we obtain 

fi:n(𝑥) =
1

𝐵(𝑖, 𝑛 − 𝑖 + 1)

𝑎𝑏𝜃2

𝜃2 + 1
(𝜃

+ 𝑥)𝑒−𝜃𝑥 [1 −
(𝜃2 + 1) + 𝜃𝑥

𝜃2 + 1
𝑒−𝜃𝑥]

𝑎−1

[1 − (1 −
(𝜃2 + 1) + 𝜃𝑥

𝜃2 + 1
𝑒−𝜃𝑥)

𝑎

]

𝑏−1

× ∑(−1)𝐿

𝑛−𝑖

𝐿=0

(
𝑛 − 𝑖

𝐿
) [1 − [1 − (1 −

(𝜃2 + 1) + 𝜃𝑥

𝜃2 + 1
𝑒−𝜃𝑥)

𝑎

]

𝑏  

]

𝑖+𝐿−1

 

 

=
1

𝐵(𝑖, 𝑛 − 𝑖 + 1)
∑ ∑(−1)𝐿+𝑆

∞

𝑠=0

𝑛−𝑖

𝐿=0

(
𝑛 − 𝑖

𝐿
) (

𝑖 + 𝐿 − 1
𝑆

) 

𝑎𝑏(𝑠 + 1)𝜃2

(𝑠 + 1)(𝜃2 + 1)
(𝜃 + 𝑥)𝑒−𝜃𝑥 × [1 −

(𝜃2 + 1) + 𝜃𝑥

𝜃2 + 1
𝑒−𝜃𝑥]

𝑎−1
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[1 − (1 −
(𝜃2 + 1) + 𝜃𝑥

𝜃2 + 1
𝑒−𝜃𝑥)

𝑎

]

𝑏(𝑆+1)−1

 

 

fi:n(𝑥) =
1

𝐵(𝑖, 𝑛 − 𝑖 + 1)
∑ ∑(−1)𝐿+𝑆

∞

𝑠=0

𝑛−𝑖

𝐿=0

(
𝑛 − 𝑖

𝐿
) (

𝑖 + 𝐿 − 1
𝑆

) 

                 𝑓(𝑥, 𝑎, 𝑏(𝑆 + 1), 𝜃)         (22) 
 

Where the beta function is 
 

𝐵(𝑖, 𝑛 − 𝑖 + 1) =
⌈(𝑖)⌈)𝑛 − 𝑖 + 1)

⌈(𝑛 + 1)
= (𝑖 − 1)! (𝑛 − 𝑖) 

and 𝑓(𝑥, 𝑎, 𝑏(𝑆 + 1), 𝜃) is the pdf of Kw-Sh distribution with parameters 𝑎, 𝑏(𝑆 + 1)and 𝜃 

respectively. 
 

4. Estimation Methods 

The method of maximum likelihood and Bayesian estimation method are used to estimate 

the distribution parameters 

4.1 Maximum likelihood estimation 

In this sub- section, the maximum likelihood estimates (MLEs) of the parameters of the 

Kw-Sh distribution are derived. 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be an independent random sample of size n from The Kw-Sh distribution. 

then the likelihood is defined as the joint density evaluated at x1, x2, … xn .Parameters are 

selected so that the likelihood function is maximized.  The log- likelihood function for the 

vector of parameters [a, b, θ ]  can be expressed as  

ln 𝐿 = 𝑛 ln 𝑎 + 𝑛 ln 𝑏  + 2𝑛 ln 𝜃  − 𝑛 ln(𝜃2 + 1) + ∑ ln(𝜃 + 𝑥𝑖)

𝑛

𝑖=1

 

−𝜃 ∑ 𝑋𝑖 + (𝑎 − 1)

𝑛

𝑖=1

∑ ln [1 − (1 +
𝜃𝑥𝑖

𝜃2 + 1
)𝑒−𝜃𝑥𝑖]

𝑛

𝑖=1

 

+(𝑏 − 1) ∑ ln {1 − [1 − (1 +
𝜃𝑥𝑖

𝜃2 + 1
) 𝑒−𝜃𝑥𝑖]

𝑎

}                                                (23)

𝑛

𝑖=1

 

The components which corresponding to the parameters in 𝜙 are calculated by 

differentiating eq. (23) with respect to three parameters as follows. 

𝜕 ln 𝐿

𝜕 𝑎
=

𝑛

𝑎
+  ∑ ln [1 − (1 +

𝜃𝑥𝑖

𝜃2 + 1
) 𝑒−𝜃𝑥𝑖]

𝑛

𝑖=1

 

 −(𝑏 − 1) ∑
[1−(

𝜃𝑥𝑖
𝜃2+1

)𝑒−𝜃𝑥𝑖]
𝑎

ln[1−(1+
𝜃𝑥𝑖

𝜃2+1
)𝑒−𝜃𝑥𝑖]

{1−[1−(1+
𝜃𝑥𝑖

𝜃2+1
)𝑒−𝜃𝑥𝑖]

𝑎

}

𝑛
𝑖=1 (24) 

𝜕 ln 𝐿

𝜕 𝑏
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=
𝑛

𝑏
+ ∑ ln {

1 −

[1 − (1 +
𝜃𝑥𝑖

𝜃2 + 1
) 𝑒−𝜃𝑥𝑖]

𝑎

}

𝑛

𝑖=1

(25) 

𝜕 ln 𝐿

𝜕 𝜃
=

2𝑛

𝜃
−

2𝑛𝜃

𝜃2 + 1
+ ∑

1

𝜃 + 𝑋𝑖

𝑛

𝑖=1

−  ∑ 𝑋𝑖

𝑛

𝑖=1

 

−(𝑎 − 1) ∑
𝑋𝑖𝑒−𝜃𝑥𝑖 [

1−𝜃2

(𝜃2+1)2
− 1 −

𝜃2𝑥𝑖

𝜃2+1
]

[1 − (1 +
𝜃𝑥𝑖

𝜃2+1
) 𝑒−𝜃𝑋𝑖]

𝑛

𝑖=1

 

+𝑎(𝑏 − 1) ∑
𝑋𝑖𝑒−𝜃𝑥𝑖 [

1−𝜃2

(𝜃2+1)2
− 1 −

𝜃2 𝑥𝑖

𝜃2+1
] [1 − (1 +

𝜃𝑥𝑖

𝜃2+1
) 𝑒−𝜃𝑥𝑖]

𝑎−1

{1 − [1 − (1 +
𝜃𝑥𝑖

𝜃2+1
) 𝑒−𝜃𝑥𝑖]

𝑎
}

             (26)

𝑛

𝑖=1

 

The maximum likelihood estimates (MLEx) of the unknown parameters can be obtained by 

setting the system of non-linear equations24, 25, and 26 to zero and solving them 

simultaneously.Therefore, we have to use mathematical package like Mathcad to get the 

MLEs of the unknown parameters. 

4.2 Bayesian Estimation 

If Ω is a vector of parameters and the prior is known that under a squared error loss 

function, Bayes estimate of any function of the parameters is the posterior expectation of 

that function.   The estimator is given by its expectation with respect to the posterior density 

(Jeffreys, (1948)).  The posterior of Ω is given by 

 

 

Where ℓ (x \  ) is the likelihood function, P ( ) is the joint prior density of . 

Bayesian estimation is always given as a ratio of two integrals which, in most cases, can be 

expressed in numerical forms.  Consequently an approximation is needed.  In the following 

section we present an approximation due to Lindley (1980) by which this ratio can be 

approximated. 

Assume that the prior distribution of  a , b  and   are respectively 
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And    

 

Let the parameters a , b and   are independent, then the joint prior of a , b and   will be 

 

Using equation (28), we have shown that the posterior density function is proportional to 

the product of the likelihood functions and prior.  That is 

P* (Ω/x)  P (Ω) ℓ (Ω \ x) 

Where Ω = (a, b , ) and P (Ω) is the prior density and ℓ (Ω \ x) is the likelihood function of 

the parameters based on the vector of observation x. 

Let u (Ω) be any function of the vector of parameters Ω = (Ω1, .., Ωm).  Under the squared 

error loss function, the Bayesian estimation of u (Ω) is the mean of the posterior 

distribution, given by 

 

 

4.2.1 Lindley Expansion 

Lindley presented the following asymptotic expansion one way of obtaining       

is by computing each of the integrals in the numerator and denominator and then finding 

the ratio.  In general, both integrals should be computed numerically.  Instead, Lindely 

integrals toobtain an approximate Bayesian estimate of u (Ω). 

The approximate calculation of the ratio of integrals of the form (Lindley, 1980, Rashwan 

and Salem, 2014) 

Posterior mean = 

Where 

Ω = (Ω1, .., Ωm)is a vector of parameters 

L (Ω/x) is the logarithm of the likelihood function 

P (Ω) is the prior distribution for Ω 

Let  Q (Ω) = Log P (Ω) we obtain 

The posterior expectation 
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The posterior expectation using Lindley expansion 

 

 

Where  )\)(( xuE   is Bayesian estimator of u ( ) under a squared error loss function 

and all summations run over all suffixes from 1 to m 

Hence each suffix denotes differentiation once with respect to the variable having that 

suffix.  Thus L222 is the third derivative with respect to Q2 similar notations are used for u 

and Q. 

Note that: 

u = u ( ),  

and ij is the (i,j) the element in the inverse of matrix {-Lij}all evaluated at the maximum 

likelihood estimates of the parameters.  

5. Applications 

The Kw-Sh distribution has been fitted to two real lifetime data sets of COVID-19 

mortality rates from Italy and Mexico [see https://covid19.who.int/].For more information 

about Covid-19 data see, Abdel-Rahman (2020). 

The first data represents a COVID-19 mortality rates data belongs to Italy of 59 days, that is 

recorded from 27 February to 27 April 2020. 

The data are as follows: 4.571 7.201 3.606 8.479 11.410 8.961 10.91910.908 6.503 18.474 

11.010 17.337 16.561 13.226 15.137 8.69715.787 13.333 11.822 14.242 11.273 14.330 

16.046 11.950 10.28211.775 10.138 9.037 12.396 10.644 8.646 8.905 8.906 7.407 

7.4457.214 6.194 4.640 5.452 5.073 4.416 4.859 4.408 4.639 3.148 4.0404.253 4.011 3.564 

3.827 3.134 2.780 2.881 3.341 2.686 2.814 2.5082.450 1.518. 

The second data represents a COVID-19 mortality rate data belongs to Mexico of 108 days, 

that is recorded from 4 March to 20 July 2020. 

This data formed of rough mortality rate. The data are as follows: 

8.826 6.105 10.383 7.267 13.220 6.015 10.855 6.122 10.685 10.0355.242 7.630 14.604 

7.903 6.327 9.391 14.962 4.730 3.215 16.49811.665 9.284 12.878 6.656 3.440 5.854 8.813 

10.043 7.260 5.9854.424 4.344 5.143 9.935 7.840 9.550 6.968 6.370 3.537 3.286 

10.1588.108 6.697 7.151 6.560 2.988 3.336 6.814 8.325 7.854 8.551 3.2283.499 3.751 

7.486 6.625 6.140 4.909 4.661 1.867 2.838 5.392 12.0428.696 6.412 3.395 1.815 3.327 

5.406 6.182 4.949 4.089 3.359 2.0703.298 5.317 5.442 4.557 4.292 2.500 6.535 4.648 

4.697 5.459 4.1203.922 3.219 1.402 2.438 3.257 3.632 3.233 3.027 2.352 1.205 2.0773.778 

3.218 2.926 2.601 2.065 1.041 1.800 3.029 2.058 2.326 2.5061.923. 
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The required numerical evaluations are implemented using Mathcad package software. In 

order to compare the KW-Sh distribution, Shanker and exponential distributions, Akaike 

information criterion (AIC) for two real data sets has been computed and presented in the 

following table (1). 

Table  (1). MLEs of model's parameters and AIC statistic for real data sets 

Data sets Models 
Parameters estimate 

AIC 
𝜃 a B 

1 

Shanker 0.1663 - - 547.4 

Exponential 0.2106 - - 555.1 

KW-Sh 0.243 1.139 0.882 524.2 

2 

Shanker 0.1834 - - 384.3 

Exponential 0.209 - - 376.3 

KW-Sh 0.263 1.57 1.62 372.75 

Note that, 𝐴𝐼𝐶 = −2 ln 𝐿 + 𝑞,  where ln 𝐿 denotes to the log- likelihood function and qis 

the number of parameters. From table (1), the results show that the KW-Sh distribution has 

the smaller value of AIC statistic when compared to that the value of the Shanker and 

exponential distributions. So, the KW-Shankermodel provides a better fit to these data. 

Table (2): The estimation and the Variance of estimators 

Parameters 
Maximum Likelihood method Bayesian method 

Data set 1 Data set 2 Data set 1 Data set 2 

A 

b 

 

1.139 (0.0206) 

0.882 (0.0116) 

0.243(0.0047) 

1.57 (0.007) 

1.62 (0.0114) 

0.263(0.0059) 

1.138 (0.0017) 

0.832 (0.0071) 

0.321(0.00067) 

1.75 (0.0029) 

1.82 (0.0091) 

0.189 
(0.0051) 

From table (2) Bayesian estimators have variance less than variance of maximum 

likelihood method, so the Bayesian estimation is better than the maximum likelihood 

estimation.  

6. Conclusions 

In this paper, a three-parameter lifetime distribution called the Kw-Sh distribution is 

introduced. Some statistical properties of this distribution such as the moments, moment 

generating function, incomplete moments, quantile function, entropies and mean deviation 

are derived and studied. We have presented two methods to estimate unknown parameters 

of K.W-SH distribution. Parameters of the KW-Sh distribution are estimated using the 

maximum likelihood estimation method and Bayesian estimation method. We used 

COVID-19 data sets to compare these methods. The results gives the best estimate of the 

Bayesian method because it have less variance. The proposed distribution is applied to 

COVID-19 data sets, the KW-Sh model gives a better fit than Shanker and exponential 

distributions. 
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