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competing Risks inComplete, Incomplete and Type-II

CensoredDatainSome Weibull Models

Abstract This paper presents estimators of the parameters included in independent competing risks in the
presence Of complete, incomplete and Type-/kensored data.A procedure is established for analyzing dala
from some of Weibull models with consideration mainly that there are two independent causes of failures.
We consider the case when the competing risks (two causes) have Weibull distribution and Rayleigh
distribution, respectively. The maximum likelihood estimators, MLEs, of the different paramelers are

obtained.Properties of the estimated values have been studied through a simulation study.

Keywords:Survival analysis; Competing Risks; Complele data; Incomplete dala, Censored data, Weibull

distribution; Rayleigh distribution; Maximum likelihood estimators and Relalive risk.

1- Introduction:

Survival analysis pertains to a statistical approach which deals with collection,
modeling and statistical analysis of data on iifetimes. The use of survival analysis today
has been of considerable interest in many branches of statistical applications such as
medical and biological sciences, actuarial science, and business studies. Like most
branches of statistics, modeling has been carried out using parametric and non-
parametric setups.The parametric setup, in survival analysis,is performed assuming that
the lifetime followssome distributions such as exponential, gamma, Weibull, and

9éneralized exponential distributions. The non-parametric setup does not consider a

specific lifetime distribution.
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another positive— ~valued continuous random variable 7= min { B st 7).They also

assumed that upon failure the cause of death or the risk which actually claimed the fife

pecomes Known. It is denoted by § and is defined as:

a=flfT=T, f=1 2 .cus, K
Thus data available from 77 independent copies of the unit are:
(6-,5,-), i=12 ..., n.

Competing risks models have been studied by several authors using parametric
and non-parametric setup. The parametric setup is performed assuming that the
competing risks follow different lifetime distributions such as Exponential, Gamma,
Weibull, and Generalized exponentialdistributions, see for example Berkson and Elveback
(1960). Cox (1959), David and Moeschberger (1978), Park (2005), Kundu and Sarhan
(2006) and Sarhan (2007). The non-parametric setup does not consider a specific
lifetime distribution. The analysis of the non—-parametric version of this model has been
investigated by several authors such as Kaplan and Meier (1958). Nonparametric models
will not be considered in this article. Most works discuss the case of two competing risks
presuming that the results would be easily generalized to the case of more than two risks.
Cox (1959) considered some general models involving arbitrary distributions for general
independent risks. In one of these models, he assumed that the random variables 7,and
Tare independently distributed with continuous distribution functions F;(tjand Fx(f). Then

the probability that the failure occurs between (7, t+{) for the first cause is given by

ait) = Hl 1 - FoAY]
and similarly, for the second cause, is given by:

9o(t) = B9 1 = Fi(Y):

ln this model, the probability that a failure is of the first cause, given that it occurs at t, is

®Qual to g,t)/ fg,(1) +g5(Y)] = m,(t), say. The probability does not involve ¢if and only if:
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many appliications, In analyzing competing tisk models, it is assumed that each
obsenation consists of a fallure time and an indicator denoting the cause of failure. It is
usually assumed, I either parametiic or non-parametric models, that both the fallure
mes and the causes of tailure are observed. Thissituation is referred to as the case of
campiete datas However, in certain situations, the determination of the cause of failure
MAy De expensive and requires time, very difficult or impossible to observe. Thus it might

happen that the fallure time of that item is observed but the corresponding cause of failure
| DOt observed [see Alwasel (2009)).

Balaknshnan and Han (2010) stated that; "a failure is associated with one of
several fatal nsk factors the test unit is exposed to. Since it is not usually possible to
study the test units with an isolated risk factor, it becomes necessary to assess each risk
factor in the presence of other risk factors. In order to analyze such a competing risks
model, each failure observation must come in a bivariate form composed of a failure time

and the cause of failure”.

Kundu and Basu (2000) considered the following two types of data:

&) The item has failed due to a certain cause of failure, and both its time of failure and the
cause are observed.

bJThe item has failed, and its time of failure has been observed, but not the cause of
failure.

They referred to the first type in (@) as a complete data, and referred to the second type
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in (b) a8 an Incomplete data. Also, they assumed that every observation in the

sample can be monitored until failure. That is, there is no censoring. But in most

applications, gome observations may be alive at the end of the project period; that is
are censored; see for example David and Moeschberger (1978).In addition

s of observations, Sarhan (2007) considered the following third

ihe data

jo the above type

type:

¢JThe item was still working at the end of the project period.

Naturally, he referred to it as a censored data.

Censoring is inevitable in live testing and survival studies because the

¢ is unable to obtain complete information on lifetime for all observations. For

s in a clinical trial may withdraw from the study, or the study may have to
ments, units may break

experimente

example, patient
pre-fixed time point. [n industrial experi

accidentally. The two most common censoring schemes are termed Type-/ and Type-1l

be terminated at a

censorng.

Type-I censoring: OCCurs if an experiment has a set number of observations or items and

stops the experiment at a predetermined time.
riment has a set number of observationsor items and

Type-Il censoring: occurs if an expe
to have failed.

stops the experiment when a predetermined number are observed

In this paper, we consider the competing risks model when the underlying lifetime

distributions are some Of Weibull models that have not been subjected 10 this type of

analysis with consideration mainly that there are two independent causes of failures. We
consider the case when the independent compe

parameters Weibull distribution and Rayleigh distrib

ting risks (two causes) have the two
ution respectively, in the presence of

complete, incomplete and Type-II censored data, since it is the mode of censoring most
common in practice.The maximum likelihood estimatorsof different parameters with
different sampling schemes and their properties are studied under theseassumptions. We
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also conduct @ simulation study for studying the properties of the estimators for unknown

narameters,

The rest of the paper is organized as follows: Notations which are needed for
jon 2. Section 3 is

describing the model and some Weibull models are presented in Sect

concemed with model assumptions. The MLEs of the unknown parameters and the

approximate asymptotic variance-covariance matrix for Type—lbensoring are considered

in Section 4. The relative risk rates are obtained in Section 5. A simulation study is

analyzed in Section 6 and conclusions are presented.

2- Notations and Some Weibull models:

2-1 Notations:

In survival analysis, some basic concepts need to be reintroduced. Since we deal
with lifetimes here, we further assume that the random variables are continuous positive-

valued. Without loss of generality, we assume that there are only two causes of failure

and we use the following notations:

B the sample size.
Tt censored value in Type-/l censoring.
f.(): denotes the probability density function, (p.d.f).
F.(): denotes the cumulative distribution function, (c.d.f).
S () denotes the survival function.
h. (.): denotes the hazard function, (h.f).

o = indicator variable means the observation i has failed at time T, due to
cause j, j=12 while 6 =* means the cause of observation /to fail
is unknown.

I(.): indicator function of the observation (.)
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9- 2 Some Weibull models:

5-2-1 The Weibull distribution:

The Weibull distribution is often used in the field of life data analysis due to its
flexibility. 1tis commonly used to model systems with monotone failure rates. In 1939,
Weibull introduced a distribution to explain the variation in the strength of a specimen.
Due fo the effect WW fbn communications among scientists the paper did not become
known in the society for community. That was just the same article as the highly cited
one of Weibull 1951, after which it became known as Weibull distribution. This paper is
concerned with the two parameters Weibull distribution. The two parameters Weibull

distribution can be used to analyze lifetime data because it can model a variety of life

behaviors. The p.d.fof Weibull distribution is:

fa,)=adt® e*" 4>0,a>0,4>0

where a is a shape parameter, A is a scale parameter. If a <1, the failurerate decreases
over time t. Ifa =1, the failure rate is constant over time. If a >1, the failure rate

increases over time.The corresponding c.d.f survival function and failure rate (or hazard

rate) respectively are:

Fy=1-¢

"~

Sit)=e™
lz(t)-—-a/ll“"

2- 2-2 The Rayleigh distribution:
The Rayleigh distribution is a special case of the Weibull distribution, that is,

The Rayleigh distribution occurs in works on radar, properties of

wheng =2and 2 =L,
r Rayleigh in around 1880. He derived it

20

sine wave plus-noise, etc. It was introduced S
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from the amplitude of sound resulting from many important sources. The H“”"’*’f
distribution is widely used in communication, engineering, reiiability anaiysis anag T
statistics,  In this study, we are concerned with Rayleigh distribution because it f "
linearly increasing rate, so, it is appropriate for components which might not g,

manufacturing defects, but age rapidly with time.The p.d.fof the Rayleigh distribution is;

,1

[ o
J,0)=—e o 0>0,0>0
a

The corresponding c¢.d.f, survival function and hazard rate respectively are:

12

Flty=1-¢ *’

lm

.S'(l)-:-e_

’,

2-

h(t) = -

3- Model assumptions:

The following assumptions are needed throughout this study:

The random latent failure times (7, Tz); / = 1,2,.....,n are independent random variables
forall/= 1,2, .., mhence Ft) = Fi(t):Fyt) and Temin[T,,T,] .

1- Let ¢, denotes the failure time according to the first cause, for ¢, s, follows Weibull
distribution, 1, denote the failure time according to the second cause, for f,’sfollows

Rayleigh distribution and t denotes the censored time.
2- Probability that [t;=, t,] = 0

3- In the first n, observations we observe, without loss of generality, the failure times and
also causes of failure. Whereas for the followingn.- n, observations we only 0bservé

the failure times and not the causes of failure that is the cause of failure is unknown:
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in the remaining M2 observations, the system still alive at the end the project

fi0ds. niameiy, we observe the foiiowing data:

TREA | P e (s ) and () o)
were, (16) means the experiment has failed at time t due to cause 4, (¢, *) means the
experiment has failed at time t but the cause of failure is unknown and (¢*,*) means

the exp
set by £ which can be categorized as a union of three disjoint classes €2, £2and ;.

wheref);re
while (),denote

eriment has tested until time ¢ without failing (censored data). We denote this

presents the set of data when the cause of experiment failure is known,

s the set of observations when the cause of experiment failure is

notes the set of censored observations. Further, the set {2;can be

ynknown and Q.de
where Qjrepresents the

divided into two disjoint

set of all observations whe

subsets of observations Q;and Q2
n the failure of the experiment is due to the cause j F~ 1,

7. We also assume that |Sul=ri, 1Q211="1;- Namely,|Ql|=r,=(r,,+r,3),192|=r2-=(n2—n,) and

Qsl=A=(n—112)-
totic variance-

4- The Maximum likelihood estimators andthe approximateasymp

covariance matrix for Type—-lbensoring
4-1 The Maximum likelihood estimators:

s, for Type |l censoring we assume that the experiment

According to our assumption
ed as the

d both its

stil working at time t, and the number of censoring observations is consider

led due to a certain cause of failure, an

number of observations which has fai
Then the likelinood

time of failure and the cause are observed (complete observations).
the likelihood function of

(- ). and (t), 0 e 60, *).f

function of the observed datathen the observed

0131, 6,),(1,,8,)ormn 8 ) P
or the general case, takes the following form:
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Therefore the log-likelihood function can be derived as in the following form:
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To estimate the unknown parameters, we need the first partial derivations of

the log-likelihood function with respect tog, Jandy” respectively as the following:

ol Mt Zk,g(z, )43 4 logt, ) - 4 3. if logr, )+

oa u 1€k, 1, ekl /, €6k,
( I "
>3 (u A 4 L (a A" log(l, )+ 21" ')A Ayt I()g(t, )4
‘Jt“I o i 1, €6l

-rn Az, log(r, )

oA A 160l 1,68, 1,66l
- Z ’fu ,l T:v:
I’t“‘
- | 2
Ul l P r” l 7 ( a | t, ll
— - S P SR & Al p - —_— | 4
dot g ,,Zn" o ! 20" ,,Z'T,ff :,»Zc;, . o’ o
l p) rmi
o DU =1 T
20' ekl 20’
Settingf’l,[ =0, o1 =Oam;_a_l_ -0, we get the likelihood equations. These
Du oA oo’

“Auations constitute a system of three nonlinear equations, that must be solved in a. 4

sl =



and o to get the MLEsof these parameters. It is obvious that the system of nonling
dar

equations has no closed form solutions. So, a numernicai €chnique is required to get e

estimates of the unknown parameters.

4-2 The approximateasymptotic variance—covariance matrix for 7ype-// censoring:

Since the MLE of the unknown parameters for Type-If censoring are not in closed
form, it is not possible to derive the exact distributions of the MLEs. We obtained the

approximate asymptotic variance-covariance matrix of the unknown parameters replacing

gby the value @ . It is known that the asymptotic distribution of the MLE & is given by:
[9—9]-+N3®J*(ﬂl

where [ (9) is theinverse of Fisher information matrix of the vector of unknown

parameters §. The elements of the '3 x Jmatix/™', I, (6),i,g=1,2,3, can be

A
approximated by /,, (9}5 given by:

Lq@)= 21)

'aaa@'ei’

g
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Since the values of Ty (2)) are not in closed form,their properties could only be obtained

through simulation studies.

5- The relative risk rates:

In this section we present the relative risk (R.R) rates due to the two causes.

Kundu and Basu (2000) considered the relative risk rate due to the first cause, x; as:

H= P(Trl<Ti2): ffl(tr)Sz (r:)dt

!

a

=fa/1t,.""'e C S

and the relative risk rate due to the second cause, . as:
Ty, = P(T:J >T¢'2): I -,

This integral has no closed analytical solution. So, numerical integration is required to get

7,and z,.We obtained the maximum likelihood estimates of the relative risks by replacing

the unknown parameters in the above relations with their maximum likelihood

estimates.Details of this will be given shortly from Table 1 through Table 6, in the

Appendix .
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6- gimulation study:

inciu

censore

results

In this section we present some simulations
results to estim
ate the param
eters

ded in independent competing risks in the presen
ce of complete, incom
, plete and

d data according to 7ype-// censoring from some of Weibull models. T
els. These

show the behavior of different sample sizes and also different parametric valu
€s.

Wwe usedtheMathad—]ck)ackage for random number generations. We considered th
* e

case when the competing risks (two causes) have the two-parameter Weibull distribution

and Rayleigh distribution respectively. We mainly observed the behavior of the MLEs in

terms of their biases and in terms of their variances.

in this section the results when censored observation obtained according to Type-//

censoring are obtained. The simulation experiments are studied according to the following

steps:

1-
2...

3_

4_

5..

6-
7-

We took sample sizes n= 25, 30, 40, 50 and [00.
The number of censored data is fixed, namely m,and thetime of failure forcensored

data is random variable, namely t,,.

The samples are drawn randomly for different values of n and different parameters

of Weibull distribution and Rayleigh distribution, the same sample size.

The minimum lifetime value from the two distributions is selected to create a new

sample.
The

different values of the different parameters, for generated samples, were selected

w for actual competition between the two causes.

to allo
c.d.fand h.fof the Weibull distributionand Rayleigh

The curves of the p.d.f,
distribution for the competing area with different values of
Figure 1 through Figure 6.

The MLEs of ¢ , 4 and g~for

parameters are shownin

a new sample are computed.

The process are replicated ten thousand times, N=10000.
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3. The age values of MLES eir biases, their relative risks and the variancg

o8 matnx are computed.
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Egure (1) Curves of the p.o.f (W and R). cdf (CW and CR) and h.f. (HW and HR ) for Weibult
Sistruton &t o = 1.75. & = 1.25 and Rayleigh distibution at g = 0.65
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Figwe (2} Curves of the p.d.f (W and R), cdf (CW and CR) and h.f. (HW and HR ) for Weibull

disiributon at g = 1.2, i = 1.3 and Rayleigh disinbulion at ¢ = 0.6
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Figure (3): Curves of the p.of (W anc R) cdf (CW and CR) and h.f. (HW and HR ) for Weibull
distriputon a2t ¢ = 1.3, 1. = 0.5 and Raylesgh distribution at g = ().7
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0.5

dstrouton at o= 3, A= 3 and Rayleigh distribution at ¢ =

ameters included in
and Type-!

Conclusions:
In this paper, we have introduce

inde \ .
pendent competing risks in the presence of

d estimators of the par
complete. incomplete
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eported in Table 1 through Table 6, it js 4
i ¥ M'ﬂy

mat:
|- The results Of 5 7 and 57 are approximately similar in natur.

7- It is cear that, as sample SiZ
matrix are decreases. Thi

es INCTeases, the biases and the vy,
¢ '3"#,@

covariance s suggests that the MLES asymppy
y;;)'.
/

unbiased an
3- 1t shoutd’ be
generated $3M
very important 10 obtain.

4- Also, it 1S observed that as the sample
cause 1 and simulated relative risks are close 10 gach ofher, Th
h is not shown in the tables since (x

d consistent estimators of the corresponding pararmeters,

emphasized that, the sl
ples which were gelected accor

ected values of 1he paramety,
]
ding to the competing sras 4

¢

size increases e theoretical relat .

risk due 10
same comment applies for cause 2 whic

+1t2)’]
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